微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > 先进的仿真方法简化UWB RFIC设计流程

先进的仿真方法简化UWB RFIC设计流程

时间:09-04 来源: 点击:

物理电路版图设计

设计过程的下一步是电路版图生成。对关键的模拟模块需要特别加以注意,这些模拟电路模块通常是通过手动布线来确保高度敏感的模拟电路满足技术指标要求。在版图设计完成后,应该利用电磁仿真来得到无源器件模型和互连之间的相互影响。

由于像HFSS这样的仿真工具和运算平台的性能不断提高,因此现在可以在关键的无线电模块的整个版图上使用三维仿真。其优势是这种精确的方法能够仿真所有的高频版图设计效应,包括片上电感、互连、片上无源器件以及到其它互连结构的耦合和介质耦合。并且对寄生现象和耦合效应不做任何假设和近似。对于整个模块严格的电磁参数抽取能够消除关于该包含哪个寄生效应的所有不确定因素。

图9描述了整个VCO模块版图的HFSS仿真项目,不包括所有的有源组件和MoM电容。在双处理器PC上仅仅用9个多小时的时间就解决了这个142端口HFSS项目,需要2.15GB的内存。



图9:在HFSS中仿真的关键VCO电路版图几何尺寸
图10显示了VCO负阻振荡器S11幅度(蓝色)和相位(红色),图中表明当提取了整个模块的寄生效应,并将其加入到电路仿真中以后,器件无法起振。如果不进行电磁场仿真,这样的问题只有在出带、制造和测试之后才能发现。这一级别的版图提取和验证对于确保一次性流片成功来说非常重要。



图10:VCO负阻振荡器S11幅度(蓝色)和相位(红色)位图,S11必须位于绿色虚线之上,器件才能振荡(a) 没有进行整板仿真时,电路振荡于4.4GHz;


图10:VCO负阻振荡器S11幅度(蓝色)和相位(红色)位图,S11必须位于绿色虚线之上,器件才能振荡(b) 整板仿真之后包含了寄生效应,器件无法起振
管理封装寄生效应

在电路仿真中加入封装寄生效应是设计过程中的另外一个关键步骤,在射频段,即使是很小的引线电感也会对电路性能产生显著的影响。

图11中所示是一个QFN封装的HFSS模型,通过仿真我们可以得到所有管脚的S参数矩阵并进一步计算得到所有引线电感。



图11:QFN IC封装模型(a) 在HFSS中建立的仿真模型;


图11:QFN IC封装模型(b) 有限元网格剖分
图12所示为在有和没有接地及电源引线电感两种情况下,图13中的电路的小信号性能。



图13:UWB接收器原理图包括T/R开关,可变增益LNA,不平衡变压器,I/Q解调器和基带滤波/AGC





图14:在考虑和不考虑接地及电源引线电感两种情况下,图13中的电路从LNA看进去的输入回波损耗。蓝色曲线是不考虑接地及电源引线电感时的参考曲线;红色曲线包括了T/R开关的接地及电源封装引线电感;绿色曲线将T/R开关和LNA的接地及电源封装引线电感全部包括在内,电路开始不稳定

从这个图中可以看出,从LNA看进去的稳定响应(S11<0dB)决定于是否包括地和电源引线电感模型。在相同的仿真中可以观察到LNA小信号增益由于地电感降低大约15dB。这个信息可以引导对设计的及时调整,这种调整反过来可以使电路稳定。

验证平台

最后,具有多个功能模块的晶体管级电路以及包含所有提取的寄生效应的全芯片验证使用一种系统(行为级)测试平台来实现。图15描述了全芯片验证系统测试平台。MBOA位和帧的精确时域波形被自动地连接到接收机电路的输入。



图15:在系统测试平台上对无线收发系统进行晶体管级全芯片验证
Nexxim使用HFSS提取的寄生效应进行电路仿真,产生的全芯片分析的有代表性的结果包括接收器输入信号频谱图(图16a)和显示了接收器上检测到的QPSK符号的星座图(图16b)。



图16:全芯片验证仿真结果(a) 接收机输入端频谱;


图16:全芯片验证仿真结果(b) 接收机检测到的QPSK符号星座图
本文小结

工程师和EDA供应商了解成功的RFIC设计需要一个具有四个主要组件的开发基础架构,它们分别是:

1. 支持时域和频域分析以及很大晶体管数量和在这样的器件中发现的谐波部分的电路仿真技术;

2. 经过验证的基于电磁的建模过程,这个过程能提供准确的、可扩展的无源器件以及开/关芯片互连和封装寄生参数描述;

3. 完善建立的设计流程,这个设计流程将这个电路仿真与EM技术衔接到经代工厂验证的器件模型、参数版图单元以及物理实现能力(如DRC与LVS);

4. 系统级开发工具用于开始的连接估算与最终的"测试平台"设计验证。Ansoft的技术领先的分析工具能直接进入到已建立的IC设计和验证流程,以满足这些严格的要求。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top