精密旋变数字转换器测量角位置和速度
c |
积分器增益 |
1/220 |
1/222 |
1/224 |
1/226 |
T |
采样周期 |
1/(CLKIN/2) |
加速度产生的跟踪误差便可计算如下:
|
(16) |
图 9 显示不同分辨率设置下的角度误差与加速度的关系。
图 9. 角度误差与加速度的关系
输入滤波器
为获得最佳的系统精度,可将旋变器输出直接连接至AD2S1210 SIN、COS、SINLO和COSLO引脚,减少失配或相移。但是,该方法并非始终有效。可能需要衰减旋变器的正弦和余弦信号,以匹配RDC的输入规 格;由于环境噪声干扰严重,可能需要对信号进行过滤,并且旋变器的连接器还可能需要提供ESD或短路保护。
图 10 显示旋变器和AD2S1210 之间的典型接口电路。串联电阻和二极管提供适当的保护,降低外部事件(如ESD或电源/接地短路)的能量。这些电阻和电容部署了低通滤波器,可以减少由于 驱动电机而耦合至旋变器输入端的高频噪声。可能还需要衰减旋变器的正弦和余弦输入信号,以便符合RDC的输 入电压规格 。这可以 通过添加 一个电阻 RA来实现。 AD2S1210 集成内部偏置电路,可将SIN、SINLO、COS和COSLO偏置为VREF/2。该微弱的偏置可轻松过载,一种简单的实现方法是采用 47 kΩ电阻RB,它可将信号偏置为 2.5 V。
图 10. 接口电路
激励缓冲器
通常需要使用缓冲器来驱动旋变器的低阻抗输入。有很多种方法可以部署该激励缓冲器,本文介绍其中的两种方法。第一种电路常用于汽车和工业设计中,第二种电路以高输出电流放大器代替标准推挽式架构,简化了设计。
11 所示之高电流驱动器可放大参考振荡器的输出,并对其进行电平转换操作。驱动器使用双通道、低噪声、精密运算放大器AD8662,以及一个分立式发射极跟随器输出级。缓冲器翻版电路提供全差分信号,驱动旋变器的初级绕组。
图 11. 使用运算放大器 AD8662 的高电流参考缓冲器(具有推挽式输出)
该高电流缓冲器提供针对标准旋变器优化的驱动能力、增益范围和带宽,可进行调节以便满足特定应用和传感器的要求,但其复杂的设计带来了一系列缺点,比如元件数、PCB尺寸、成本和进行修改以满足特定应用所需的工程设计时间。
通过采用放大器代替AD8662,可以优化该设计;放大器提供直接驱动旋变器所需的高输出电流,简化了设计,无需使用推挽级。
图 12 中的高电流驱动器采用高电流双通道运算放大器AD8397 该器件具有轨到轨输出,可以放大参考振荡器输出信号并对其进行电平转换,优化旋变器接口。AD8397 具有低失真、高输出电流和宽动态范围特性,非常适合与旋变器一同使用。在 32 Ω负载情况下,该器件具有 310 mA电流能力,无需使用传统的推挽级便可为旋变器提供所需的电源,从而简化驱动器电路,并降低功耗。翻版电路提供全差分信号,驱动初级绕组。AD8397 采用 8 引脚SOIC封装,额定工作温度 为–40°C至+125°C扩展工业温度范围。
图 12. 基于运算放大器 AD8397 的高电流参考缓冲器
可以修改无源元件值,以改变输出幅度和共模电压;输出幅度由放大器增益 R2/R1设置,而共模电压由R3 和 R4设置。
电容 C1 和电阻R2组成低通滤波器,最大程度降低EXC和EXC输出端的噪声。应当以最大程度降低载波的相移为标准选择电容。激励输出和正弦/余弦输入之间的总相移不应超过RDC的锁相范围。电容为可选元件,因为经典旋变器可以很好地过滤高频分量。
图 13 显示AD8397 参考缓冲器与传统推挽电路的对比。FFT分析仪测量AD2S1210 激励信号的基波和谐波功率。
图 13. 缓冲器 AD8397与推挽缓冲器 AD8662
在两种配置中,基波功率几乎没有差异,但缓冲器AD8397的谐波更低。虽然AD8397 电路的失真略低,但两个缓冲器的性能相当。相比传统电路,省略推挽级可以简化设计、减 少空间并降低功耗。
结论
与旋变数字转换器AD2S1210 一同使用时,旋变器可以为电 机控制应用的位置和速度测量提供高精度、性能稳定的控制系统。为了获得最佳的整体性能,需要使用基于AD8662 或 AD8397 的缓冲器电路以放大激励信号,同时提供旋变器所 需的驱动强度。为了使系统更为完整,可以按需采用基本输 入电路提供信号调理。如同所有混合信号机电一体化信号 链,设计精确系统时必须十分仔细地考虑到所有误差来源。 AD2S1210 具有可变的分辨率,可以生成参考信号,并集成 片内诊断功能,是旋变器应用的理想RDC解决方案。该器件同时提供工业级和汽车级产品。