两款新器件重塑信号发生器
最后一个选项,也可能是信号发生器最有用的选项,不使用8 Ω焊盘,而且输出功率提高了一倍。我们仍然建议使用LC 阶梯式滤波器,如图11 所示,但阶梯值比用于50 Ω 系统(设计的标称阻抗为16 Ω)的值小3.125 倍。在这种情况下,自动变压器使用的匝数比为0.77:1。该模式下,峰值正弦波输出幅度为28.3 V,ADA4870 将驱动约16 W 至50 Ω 负载(8 W rms 或39 dBm)。

图11. 用于驱动50 Ω 负载的最佳功率输出连接
整体解决方案
在现实世界中,如果与真实世界不相符,仿真和等式毫无意义。因此,有必要构建一个完整的系统,基于预期值测量其性能。图12 所示为一种实际焊盘式输出设计的原理图。

图12. 完整的简化原理图
图13 所示为无滤波器条件下的实测结果。系统增益一致性误差为±1 dB,最差条件下输出功率高达2.75 W rms(5.5 W 峰值)(P1dB压缩点,34 dBm)。值得注意的是,总增益范围超过62 dB,范围比许多标准发生器多

图13. 焊盘式、未滤波输出功率结果。无滤波器时,
系统在36 dBm时出 现一个P1dB 点。FTEST = 14.0956 MHz
增益范围可通过改善DDS 输出端滤波机制以及降低系统噪声的方式提高。图14 所示为采用滤波器时的相同测量值。滤波输出不存在同样的P1dB 问题,结果将满量程+36 dBm 输出转换成50 Ω负载。总增益线性度更佳(≤0.65 dB),误差仅出现在中间电平周围。

图14. 5 阶低通滤波器的实测输出(fc = 20 MHz)。FTEST = 14.0956 MHz
如果具体运行模式需要甚至更高的输出功率,则针对给定应用,可以将多个输出放大用于驱动专业变压器。或者,可以将这里描述的设计方法用于电源较低的系统,但这些方法必须符合替代设计的限制要求。
注意,受累积输入衰减和增益误差影响,测量上限止于VGAIN =0.9375 V。通过调整初始衰减网络,充分考虑总系统误差,可以解决这个问题。校正后,总系统增益范围将增至74 dB。
结论
配合高性能VGA 使用高性能、高输出CFA,可以为新一代信号发生器构建出一种简单前端。这些器件的高度集成可以降低PCB电路板的总面积和成本。
要获得更多功能,可以在闭环反馈系统中使用AD8310 等对数放大器。增加对数放大器后,配合AD9834C 等DDS,设计师可以集成各种形式的包络调制,如频移键控(FSK)、开关键控(OOK)和相移键控(PSK),将其作为一项内在功能;通过创造性地使用两个基本模块,实现不尽其数的选项。
