微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 用于磁流变液体阻尼器的可控电流放大器

用于磁流变液体阻尼器的可控电流放大器

时间:11-26 来源:互联网 点击:

V之间。当PWM频率设置在25 kHz,RPWM被取为75 kΩ时,占空比为10%;RPWM被取为200 kΩ时,占空比为90%。若川模拟电压或D/A转换器时,模拟电压或D/A转换器必须能够提供灌电流能力(=2.75,Iref而Iref=1.3 V/Rfreq)。

脚2是设置上电后DRV103从DC(100%占空比)转到PWM模式的初始时间,即延时调节。它在内部连接到一个3μA的电流源和一个2.6 V阈值的比较器。当脚2上电压低于2.6 V时,DRV103是100%占 空比输出_。当此脚悬空时,延时时间为18μs。这是由内部奇生电容引起的。若有需要更少时间,它可以连接到+5 V,延时时问可减少到1μs当脚2接上10μF电容时,延时时间可到11 s。PWM频率是通过脚3的接地电阻值}殳定。DRV103内部振荡器的频率范围在500 Hz~100 kHz。但是在500 Hz下,外接电阻值将达到lO MΩ。脚2将成为高阻抗输入节点,会对电噪信号非常敏感。当PWM频率是10 kHz、2 5 kHz和5 0 kHz时外接电阻值分刖为523 kΩ、205 kΩ和1100 kΩ。

DRV103通过一个功率DMOS管输出3 A驱动电流(脚5),足够驱动中小型电磁线圈。其导通电阻为0.5 Q,确保低功耗。最高上升速率限制的栅极驱动能够减少RFI/EFI辐射噪声。当驱动电感负载时,DRV103内部的钳位二极符ESD不能取代外部放电二极管。脚7是故障指示输出。当过电流或过热时,提供一个灌电流通道来驱动发光二极僻,最大灌电流限
制在10 mA之内。脚8是TTL电平兼容的输入端口,高于1.7 V时,DRV103提供PWM输出;低于1.7 V时,DRV103无PWM输出。脚8不能"接连接到电源上,否则会损坏DRV103。脚6是电源,其范围是+8 v~+32 V,它必须大于负载供电电压 。

DRV103电特性参数(典型值)如下:

输出电流(脚5)1.5 A,SO-8封装(U);

输出电流(脚5)3 A,功率PADTM封装(H);

最大电流限制(脚5)3.5 A,超过此值,归零;

导通电阻0.4 Ω;

输出时饱和电压+0.4 V,I0=1 A;

数字控制输入(脚8)+2.2 V~+5.5 V(TTL电平),高电平使能;

恒定DC输出对PWM延时(脚2)110 ms,取决于外部电容;

占宅比调节(脚1)10%~90%;

占空比精度±2%,25 kHz、50%占空比;

非线性l%FSR;

动态响应:输出电压上升时间0.2μs,输出电压下降时间0.2μs,振荡频率范围0.5 kHz~100 kHz,Rosc=205 kΩ,f=25 kHz;

工作温度-55℃~+125℃;

温度保护+160℃,+140℃时恢复;

故障输出(脚7)5 V,20 kΩ上拉到+5 V;

故障输出灌电流2 mA;

电源供给范围(脚6)+8 V~+32 V。


注:输出电流被DRV103功率耗散所限。当达到输出电流上限,输出电流将被置为0。恒定DC输出对PWM延时=1.1 Cn×106(CD单位为F)。功率PADTMSO-8(H)封装在散热片下长期最大工作电流为2 A。

可控电流放大器由PWM控制DRV103、负载电流反馈环节、占空比电压信号线性变换3部分组成。由于在磁流变液体研究中需要大电流进行多种性能实验,特地在DRV103输出增加一级电流驱动,使之最大驱动电流能够达到40 A。这级驱动采用International Rectifier公司生产的HEXFET功率MOSFET管IRF5210,其最大工作电流为40 A,反向电压为100 V,导通电阻为0.06 Ω。若需要更大的输出电流,可采用IRF4905,其最大工作电流为74 A,反向电压为55 V,导通电阻为0.02 Ω。快速恢复外延二级管DSE120为电磁线圈放电提供快速通道,保护MOSFET管IRF5210。PWM振荡频率可调,当该电阻Rref调到205 kΩ时,振荡频率设置在25 kHz,该电阻Rref调到100 kΩ时,振荡频率设置在50 kHz。但是,若振荡频率设置在50 kHz,占空比调节将会发生变化,不再是图3所示曲线。上电后系统自动地工作(自动使能),无须另加控制信号。

当温度变化引起负载电阻值改变会带来电流不稳定,进而影响磁流变液体阻尼效果。磁流变液体可控电流放大器可设计成电流反馈控制型,如图5所示。即在负载上串联一个采样电阻Rsense,取出电流信号,输入一个负反馈放大器A1,取出电压V1:

\

经过误差比较放大器A2,当R4=R5=R6时,有误差输出电压V2:

\
 

经过PI运算,其输出V3为:


\

在一个确定不变的D/A输入信号下,若负载电流由于温度而变大,则Vsense变大,根据式(3),V3将变小,占空比减小,导致输出电流减小从而抵消负载电流的增大,维持负载电流稳定。若考虑到当大电流时,采样电阻功耗太大,发热严重,可取消电流反馈回路。

考虑到许多新的D/A转换器不具有灌电流能力,而且D/A的输出通常是0 V~+10 V,若直接将D/A接入脚1,将会出现大的死区,除

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top