微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 基于Multisim7的负反馈放大电路的研究

基于Multisim7的负反馈放大电路的研究

时间:12-01 来源:互联网 点击:

和电流表接在输入端,测得开环时,Ui=6.98 mV,Ii=0.901μA,则Ri=Ui/Ii=7.75 kΩ;闭环时,Iif=0.061μA,Rif=Uif/Iif=115.13 kΩ。理论值为:Ri=Rb11∥Rb12∥[rbe1+(1+β)Ref]=7.72 kΩ,Rif=Ri(1+AuFu)=114.68 kΩ。可见,串联负反馈使输入电阻增大。

6 输出电阻

在输出端接交流电压表,测出开环和闭环的输出电压,Uo=1.031 V,Uo′=0.07 V,再将开关C打开,即负载RL开路,分别测出开环和闭环时的开路电压,Uoc=1.534 V,Uoc=0.072 V,则Ro=(Uoc/Uo-1)RL=4.88 kΩ,Rof=(U′oc/U′o-1)RL=0.29 kΩ。理论值为:Ro∥RC2=5 kΩ,Rof=Ro/(1+AusFu)=0.337 kΩ,输出电阻减小了。

7 通频带

用交流分析法,分别测量开环和闭环的上下限截止频率。单击Simulate菜单中Analyses选项下的ACAnalysis(交流分析)命令,在弹出的对话框中,点击Frequency Parameters标签,设置AC分析时的参数频率:交流分析的起始频率1 Hz、终止频率10 GHz、扫描方式Decade、取样数量10、纵坐标的刻度Linear。最后单击Simulate按扭进行仿真,其仿真结果见图5、图6。

图5中fL=28.3924 Hz,fH=462.407 2 kHz,通频带fbw=fH-fL=462.378 9 kHz,稳频时的增益约为148.088。由图6,fLf=9.665 4 Hz,fHf=7.880 5 kHz,通频带fbwf=fHf-fLf=7.880 4 MHz,稳频时的增益约为10.094。由此直观地反映了引入负反馈后增益降低了,但是扩宽了通频带。

8 观察负反馈对非线性失真的改善

打开开关B(开环),增大输入信号的幅值(频率不变),使输出电压波形出现轻度非线性失真,仿真结果见图7。再闭合开关B(闭环),观察输出电压波形,见图8。可见负反馈改善了非线性失真。

9 反馈深度对反馈效果的影响

用参数扫描法分析,方法同第4节。仿真结果见图9。

设置将要扫描分析的反馈电阻Rf的起始值、终止值、扫描点数,即设置start 5100,stop 51000,#of 2,点击More

按扭,在Analysis to下拉菜单中选择AC analysis(交流分析),默认Croup all traces on 0ne plot,最后单击Simulate按扭进行仿真。由图9可见Rf越大,反馈深度(1+AuFu)越小,增益越大,通频带越窄,即反馈深度对反馈效果的影响较大。

10 结束语

通过Multisim 7的仿真分析,直观形象地反映了放大电路引入负反馈后,虽然降低了放大倍数,但放大电路的其他性能得到了改善。教学实践证明,在电子技术的理论课教学中应用计算机软件进行仿真分析,加深了对电路原理、信号流通过程、元器件参数及电路性能的了解,使抽象的理论形象化,使复杂的电路分析变得生动形象、真实可信,让学生在课堂上就能感受到实验才能具有的测试效果,克服了传统理论教学的不足,对提高教学质量、激发学习热情、增强学习的主动性积极性、培养电路设计能力和创新能力具有重要作用。在预习实验或电路设计时用EWB模拟,不仅实验能较快地进行,而且不消耗元器件。有利于培养学生的逻辑思维、工程观点和分析解决问题的能力,方便快捷的仿真实验优化了教学效果,值得研究和推广。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top