微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 采用D/A转换器实现可编程放大器的设计

采用D/A转换器实现可编程放大器的设计

时间:11-16 来源:互联网 点击:

摘 要:依据电子技术理论,采用模/数相结合的设计方法,设计讨论了一种增益可调的编程放大器的实现方法,并对其进行了理论分析,给出了实际应用电路。

关键词:D/A转换器; 运算放大器; 可编程放大器

引 言

在许多数据采集现场,特别是小信号工业现场的数据采集系统,由于信号源的多样性,常常需要采集系统的前向通道,具有可变的放大倍数,使之能对测量信号进行满量程放大,保证测量精度。因此,多数采集系统的前向通道,需要可编程放大器的支持。

目前,采集系统的前向通道,一般采用外接电阻和模拟开关来实现可编程的增益变换,使得编程放大器的放大倍数,级差变化较大,可调整范围较小,对外接电阻的精度要求较高,且需要较复杂的接口电路,给设计和应用带来了诸多不便。根据电子技术理论,利用D/A转换器的特有工作原理,实现一种增益可编程的信号放大电路,是一种较好的和经济的方法,且具有一定的应用和实践意义。

原理实现

一种R-2R 梯型网络式D/A 转换器的原理结构图如图l所示。其转换原理为电阻加权网络,按需求产生不同的加权电压,然后相加得到要转换的模拟电压。图1中VRef为参考电源输入端,是转换器输出电压的基准; Iout1和Iout2为转换器模拟量的互补输出端,由数据控制相应的开关控制,产生对应的电流信号: Rfb为反馈电阻接入端,使得内部网络可与外部放大器组成闭环回路,完成电压的叠加; K0 ~K7 为由数字量控制的模拟开关, 控制D/A转换的数据输入,实现D/A转换器的模拟量输出。

由图1分析知,该类型的D/A转换器是由电阻网络对基准电压VRef按2i ( i = 0, ., 7)的权值取其电压分量,由开关控制是否将对应的权值位接入到输出端上,再由Iout1和Iout2互补输出。根据电路基本原理,若将Iout1和Iout2输入至运放,则在运放的输出端得到如下数学表达关系式


N 为D/A转换器的数字量输入值。通过上式可得到,数/模转换电路(D/A转换器+运算放大器)的模拟量输出Vout ,实际是对参考电压VRef的一种分压变换,若将VRef看成是输入电压信号,则给定数字量与它的字长N 位模2N 的比即可看成是放大倍数, 那么从运算放大器的Vout端,随着给定数字量的不同,可在输出信号Vout端,得到与VRef对应关系的输出信号Vout。因此可利用D/A转换器,实现对VRef信号端编程的增益变换。



图1 R-2R梯型网络式D/A转换器的原理结构图



电路设计

通过上述的讨论,采用D/A转换器实现信号的传输是可行的。但由式( 1)可看到,若将VRef作为输出端,在Vout输出端,只能获得小于等于一的增益。通过图1可以看出,VRef、Iout1、Iout2和Rfb端是构成R-2R梯形电阻网络的模拟信号端口,网络的组成可由数字接口信号控制。那么对这些端点进行新的组合应用,则可实现增益大于一的编程放大器。其实现原理图见图2。

在图2中,改变原理图1中信号的接入点,将Rfb端作为放大电路的信号输入端Vin ,将Iout1端接运算放大器的信号输入负端,同时将VRef端接运放的输出,使通过D/A转换器的内部电阻R网络,构成了基本放大电路的反馈电阻网络。这样由D/A转换器的R-2R网络,和运算放大器共同组成了可编程的放大电路。根据运算放大器V + =V - 的虚短原理有



图2 编程放大器电原理图


若改变Rin、Rf 的任何一个的阻值,均可改变放大器的放大倍数。故而在该电路中,可由D/A转换器的数字量输入改变反馈电阻网络的投、切,实现Rf 的变化,从而实现放大器增益的可编程。由原理图2可推得


N 为数字量给定,它的范围是从0 ~255 (对应DAC0832)的数值,当给定为满刻度时(255) 10,可获得近似为1的最小增益;当给定数字为"0"时,则电路中出现放大器反馈电阻开路,运放处于开环状态,因此理论上,该电路可实现从1~∞的可编程增益。

为了不出现开环增益的情况,在电路中,在运放的输出与输入端,并入一兆欧级(电路中为15 MΩ)的电阻,防止出现开路状态,造成对电路的影响。DAC0832是一片带双缓冲输入的8位D/A转换器,它具有灵活的数字接口,数字信道具有双缓冲功能,且可单独控制;数字接口逻辑支持5 V供电系统,可方便地与微机对接;模拟信道允许正、负15 V的动态摆幅,是一种非常通用D/A转换器。设计中将其设计为单缓冲模式,WR1,作为编程信号统一控制,该端可作为与微机的接口控制信号应用。当且仅当,该信号为低电平时,才可能将由数据线来的数字,写入D/A转换器,否则,D/A转换器处于保持状态,既保持放大器的放大倍数不变。其信号传输时序如图3。



图3 编程信号时序图

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top