一种数模结合三相正弦波发生器设计
VGS2。M1,M2形成电流镜像,且ID1=Iref,则有:
解得,λ为沟道长度调制因子。 为实现精确的镜像电流,由上式可知,必须减小沟道调制效应的影响,即使VDS2=VDS1,经分析必须满足条件:
由于M0和M3的源端不是最低电位,故存在衬偏效应,但由于结构对称,对镜像电流精度没有影响。根据离散化正弦函数值,第i个电流源量化电流值为:
Ii=ksin[(π/N)(1+2i)],其中k为常数,i=0,1,2,…29。
可以据此方法镜像出30个正弦序列电流源。
高增益运算放大器的设计
运放在闭环工作状态,该运放工作时正相端接地,反相端接反馈电阻形成负反馈连接。在理想情况下,认为运放增益Av无穷大,实际工作时还要加以考虑。由于运放正负相端在低频输入条件下的阻抗非常大,可以当作输入端虚断,可知i-≈i+=0。工作时电流I通过反馈电阻,由于负反馈机制,负向输入端被嵌位至零电平,输出为输出电压Vout=IRf,这样就实现了电流到电压的转换,即I-V转换。
对运放实际增益加以考虑,则有:
若要Vout≡IRf,则要求Av无穷大。可根据实际精度要求,在1KHz以下,要求绝对误差:令|IRf |=5V,解得Av≥9999。即201ogAv≥201og9
999=80dB。
所以,要满足输出误差小于0.5mV的精度要求,就必须对运放Av,有最低增益要求。本设计要求运放在输出正弦波1KHz内的低频段内,要保证直流开环增益Av≥80dB,另外,还要保证运放在闭环工作的稳定性。这里使用输入级为N沟道输入折叠式共源共栅的两级CMOS运算放大器。该电路输入级采用N沟道差分输入的折叠式输入级,输出采用电流源负载的共源放大级。
使用Pspice仿真软件对运放进行交流信号AC扫描,仿真结果显示该运放的单位增益带宽为21.4MHz,对应相位裕度为91°。在1KHz处的增益为87.3dB,2.3KHz处的增益为80dB。显然,该电路满足在1KHz以下对放大器的增益和工作稳定性的设计要求。此外,每相运放反馈电阻要满足Raf=Rbf=Rcf,阻值范围根据实际工作而定。
三相30阶梯正弦波低通滤波前后输出波形仿真结果
在使用正负电源的情况下,利用灌电流和拉电流的镜像电流源序列实现直流电平为零的正弦波。经过I-V转换,就可以使该正弦波的直流电平为零,无需对正弦输出进行电平位移,具有很好的对称性。如图3所示,该波形是输入时钟频率为6KHz、输出为200Hz三相正弦阶梯波及低通滤波后的输出波形:上栏中为三相30阶梯正弦波OutA、OutB、OutC,其中,Sine为正弦参考波形,下栏为30阶梯波低通滤波后的三相正弦波SinA、SinB、SinC。
对比可以看出,30阶梯正弦波信号在开关切换瞬间有直流尖峰脉冲,即高频毛刺,因为开关导通和关断不是理想的开关状态,即开关导通和关断时刻,导通内阻发生变化。因为该脉冲信号很窄,频率高,所以也可以通过低通滤波器对波形的高频信号加以滤除。图3下栏即为该信号通过低通滤波后的正弦波。由于低通滤波器的存在,虽然高频信号被滤除,但是幅值和频率都会平移,所以,在获得高质量的三相正弦波时需要注意。
结语
本文提出了数模结合的低失真三相30阶梯正弦波发生器电路。该电路结构新颖,适合单片集成。该设计使用Spice仿真软件,采用骊山微电子公司的3μm模型参数对电路进行模拟仿真,设计出1KHz以下低频范围内零电平、高精度、低失真的三相阶梯波正弦波发生器,仿真结果显示达到了预期的设计要求。