将安森美恒流稳流器用于可充电电池的低成本充电电路
1) 随时间变化的充电电流
使用恒流稳流器充电电流可保持不变,直到充电终止,如图5所示。
图5:随时间变化的充电电流
2) BJT和二极管的功耗
如今,人们都非常关心电路的功耗。降低输入电压是一种方式,为的是提高电路性能。这是使用低VCE(sat)晶体管的原因之一。如表1所示,晶体管的VCE非常低。图6也描述了随着时间推移PNP晶体管所消耗的功率。正如人们所期望的,在充电电流增加时耗散功率(PD)也增加了。然而,在约300 mA的充电电流下,晶体管消耗的功率小于15 mW。
除了使用低VCE(sat) 的BJT,还可使用一个DSN2封装的低正向压降(VF)肖特基二极管来降低功耗。该二极管用于反向电流保护。选择安森美半导体的NSR10F40NXT5G的原因是它有市场上最低的VF。在最高充电电流下测得的二极管消耗功率大约为95 mW。图7显示了电池正在充电时DSN2低VF肖特基势垒二极管的功耗。
使用低VCE(sat) BJT和低VF肖特基二极管输入电压可降至尽可能最低。
图7:随时间变化的二极管耗散功率
3) CCR的功耗
功耗是使用CCR时一个非常重要的参数。它是使所有电压下降以确保恒流电池充电的器件。当器件开始升温时,电流开始下降。为了尽量减少CCR温升,板上大部分空位放置了铜箔。然后CCR的阴极被连接到该区域的铜箔作为散热片。当使用多个并联CCR时,要牢记各CCR的功耗只是CCR独立电流乘以电压的值,而不是总充电电流值。图8显示了随时间推移的CCR消耗的功率。当使用多个CCR获取更高充电电流时,只显示了一个CCR数据。
图8:随时间变化的CCR的耗散功率
4) 随时间推移的电池电压
图9描述了所有六个测试用例的电池电压。对于锂离子电池电压,人们期望看到当电压达到4.2 V时电压开始变平。在比较先进的电路中,这将适用于涓流充电。然而,如上所述该电路设计为的是在预定电压下停止充电,本例中为4.15 V。
图9:随时间变化的电池电压
结论
综上所述,恒流稳流器也就是CCR可以提供电池充电用的恒流。此外,当用CCR实现上面讨论的控制器时,有可能用相同的电路以不同的电流为不同的化学电池充电。这样,既可以满足特定应用要求,又能确保安全和无故障的充电操作。
- 基于MAX1501的锂离子电池充电器的研制(01-06)
- SBS管理器确保锂离子电池安全高效(02-23)
- 电池基本知识 锂离子电池基础知识大汇萃(09-09)
- 锂离子电池充电器扩流电路设计(02-24)
- 如何选择锂离子充电管理IC(04-29)
- 智能充电管理可以克服便携式设备面临的挑战(05-11)