LED照明系统设计技巧
图 2:用于A19白炽灯替换灯的5W、15V可控硅调光LED驱动器的电路图
图2中的电路提供350mA的单路恒流输出和15V的LED串电压。使用标准交流电源可控硅调光器可将输出电流减小1%(3mA),并且不会造成LED负载不稳定或闪烁。该驱动器可同时兼容低成本的可控硅调光器和更复杂的电子前沿及后沿调光器。
该驱动器的功能增加了输入EMI滤波和三个可控硅调光所特有的元件:一个无源衰减电路、一个有源衰减电路和一个泄放电路。
输入EMI滤波可确保符合IEC环形波和EN55015传导EMI规定。然而,关键点在于LinkSwitch-PL控制器集成了内置的频率抖动特性。该特性可分散开关频率和降低EMI峰值,使EMI滤波电路的尺寸远低于正常要求。这有助于大幅减小对可控硅带来的电感性负载,从而降低发生振荡的可能性。
电阻R20构成无源衰减电路。有源衰减电路在每个交流半周期通过输入整流管连接串联电阻(R7和R8),在剩下的交流周期则通过并联可控硅整流器 (Q3)绕过该电阻。电阻R3、R4和C3决定Q3导通前的延迟时间,然后将衰减电阻R7和R8短路。无源衰减电路和有源衰减电路可在每个半周期可控硅导通时,共同限制峰值浪涌电流。
电阻R10、R11和C6形成泄放电路,确保初始输入电流量可以满足可控硅的维持电流要求,特别是在导通角较小的情况下。对于非调光应用,则可以省去无源衰减电路、有源衰减电路以及泄放电路。
隔离式LED驱动器
图2中的驱动器针对低功率、电气非隔离式集成LED替换灯专门优化过。PI针对要求电气隔离的更高功率LED照明系统,推出了LinkSwitch-PH控制器。图3所示(详见本刊网站)为使用LinkSwitch-PH的隔离式LED驱动器的电路图。
图3:14W可控硅调光的高功率因数LED驱动器的电路图
该电路能够在90VAC至265VAC的输入电压范围内对28V的额定LED串电压提供0.5A驱动电流,其特性包括超宽调光范围、无闪烁工作(即使使用低成本的交流输入可控硅调光器)以及快速平滑的导通。
它所使用的拓扑结构是运行于连续导通模式下的隔离反激式结构。输出电流调节完全从初级侧检测,因此无需使用次级反馈元件。单级内部控制器调整高压功率MOSFET的占空比,以保持输入电流为正弦交流电,从而确保高功率因数和低谐波电流。
该电路的功能与图2中的电路大体相似,最明显的差异是该电路采用了电气隔离,没有使用与负载串联的检测电阻。反馈控制通过变压器上的偏置绕组提供。反馈控制具有两项功能:经由旁路(BP)输入对LinkSwitch-PH供电,经由反馈(FB)输入提供电流反馈。LinkSwitch-PH提供的另一个重要输入是电压监测(V)。该引脚与外部输入电压峰值检测器接口相连,后者由D1、C3、R1、R2和R3构成。外加电流用于控制输入欠压(UV)和过压(OV)的停止逻辑,并提供前馈信号以控制输出电流和远程开/关功能。该电路集成了衰减电路和泄放电路,以确保可控硅工作。
在任何LED照明装置中,驱动器的性能都决定着最终用户的照明体验,包括启动时间、调光、无闪烁工作和各单元之间的一致性。14 W驱动器可同时在115 VAC和230 VAC下兼容各种调光器并兼容尽可能宽的调光范围。因此,衰减电路和泄放电路会起到相对积极的作用,但这会让效率下降。即使如此,该电路的效率仍能在115 VAC下≥85%,在230 VAC下≥87%。如果不需要调光功能,可省去衰减电路和泄放电路,可取得更高的效率。
随着LED照明市场潜力的不断扩大,上述设计折衷凸显出了一系列哲学问题。既然新技术的功耗只是旧技术的十分之一,在会降低效率(即增加功耗)的情况下,是否真的有必要与所有旧的可控硅控制器实现兼容?当使用一个最低负载规格为40W的1000W可控硅控制器提供驱动时,我们能否让一个5W LED灯正确工作呢?是的,这是可以做到的,也许应该尽快做到。但我们必须谨记,完整照明解决方案的最终目标是实现最大效率和最低生命周期成本。
- LED照明模块的即插即用解决方案取代传统照明(02-25)
- 安森美半导体针对不同应用的先进LED驱动器方案(07-10)
- 电子技术在LED照明中通用照明和智能控制的应用(09-18)
- LED照明设计需考虑的各种因素(10-01)
- 安森美半导体智能LED街灯及楼宇照明通信、控制及保护方案(05-05)
- 安森美半导体通用照明AC-DC LED驱动器方案(05-12)