微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 基于PSoC的燃气变频输配与精确计量的实现

基于PSoC的燃气变频输配与精确计量的实现

时间:06-29 来源:互联网 点击:

 在燃气的变频输配与计量方面,以普通单板机/单片机组成的大流量范围的燃气计量仪表和工控机实现的一器多控自动变频调速输配系统广为应用,有力地提高了计量精度并节约了大量的能源。但是用"单板机/单片机+外围器件"计量燃气,系统复杂,稳定性差;用工控机变频输配燃气,造成资源浪费。从提高系统稳定可靠性、简化硬软件设计、降低产品成本等角度出发,结合现代科学技术的发展,非常需要一种构成系统简单、灵活易用的器件,去改造上述两个体系,并尽可能把它们合二为一。选用Cypress公司新近推出的一系列PSoC单片机进行上述技术改进,不仅可以很好达到预期目的,并且还可以有效提高系统测控的实时性能。

1 PSoC单片机及其特点

PSoC即Programmable System On Chip。Cypress公司的PSoC系列单片机CY8C25xxx/26xxx,片内有一个高速内核、Flash快速闪存和SRAM数据内存,以及设计者可配置的模拟模块和数字模块:

(1)CPU内核,8位哈佛结构,速度可达24MHz;且含一乘加器MAC,能执行带符号8x8乘法和32位加法运算;

(2)4~16KB片内Flash闪存及256B SRAM,可通过串口在系统编程(1SSP)Flash闪存,Flash具有可加密保护功能;

(3)12个PSoC模拟模块可灵活配置成6~13位A/D转换器、可编程增益放大器(PGA)、采样保持功能、可编程滤波器、差分比较器、温度传感器等; PSoC系列单片机将传统的单片机系统集成在一颗芯片里,用户模拟和数字阵列的可配置性是其最大特点。

(4)8个数字模块可灵活配置成定时/计数器、脉宽调制器(PWM)、循环冗余校验块(CRC)、串行通信块(UARTS或SPI)及复杂的时钟源等;

(5)4~44个通用I/O口,可编程为上/下拉输出、集电极开路输出、强输出,可用作边沿/电平触发的中断输入或Smith触发器TTL输入;

(6)专用的中断控制器,2级中断优先级,中断源:通用I/O、电源监控单元、Sleep定时器、8个PSoC数字模块和4个模拟列;

(7)24/48MHz的片内主振荡器和32.768kHz片内低速振荡器;WatchDog/Sleep定时器、可编程的电源电压检测器、采样抽取器、片内电压参考源等专用外设;可选用的模块端口(E2PROM、LCD、I2C等);


(8)全静态CMOS工艺,3~5.5V DC工作电压,专用的开关式电压泵,可使工作电压降到1V,真正的高速低压性能;

(9)配套的低廉开发工具:在线仿真器、评估板和集成开发环境PSoC Designer,其PSoC Designer内嵌汇编器、C编译器、器件资源配置器和调试器。

2 变频输配与大流量范围计量的机理

2.1 一器多控变频燃气输配的机理

燃气输配主要是维持气源端的压力。压力不足时,逐步加开输配机组,升高压力到设定值;反之,压力过高时,逐步减停机组,降低压力到设定值。由于大功率交流电机反复启停的巨大耗能和器件冲击,所以引入了变频调速器。为进一步降低成本,通常采用一台变频器控制多台交流电机,即所谓的"一器多控",其机理如下:加压时,变频启动并加速一台电机,达到最大速度时,压力仍没有增上来,则把这台电机转为工频运行,转而对下一台电机做变频启动并加速,如此逐步变频启动加速并做工频切换,直到把压力提上来;反之,减压时,则逐步做变频切换并变频减速停机,直到把压力降到要求值。

2.2 大流量范围燃气计量的机理

孔板式差压流量计在不变节流件开孔直径下扩展量程比,主要是采用增设差压量程切换单元的方法:在流量小、差压低时,使用小差压量程检测计算;反之,使用大差压量程检测计算。检测计量流程如图1所示。图1中参数T、P、△P、d、D、K、Z、η、β、ρ、ε、α0、rRe、M分别表示温度、压力、差压、孔板开口直径、计量管段直径、介质等熵指数、气体压缩系数、介质粘度、d/D、密度、流速系数、流出系数、管道雷诺数、流量。


3 PSoC单片机测控系统的构建

3.1 整体方案的设计

整体设计方案如图2所示,说明如下:



(1)数据采集,采用1~5V的三通道11位A/D转换器,拟定采样率7.8ksps;压力作频繁采样,以增强变频输配控制的实时性;差压与温度只在计量计算需要时采样;

(2)输出通道,采用一8位D/A转换器控制变频器,若干工/变频切换控制信号,一手动/自动变频切换控制信号,D/A输出为0~5V DC信号,切换控制信号具有驱动能力;

(3)人机接口,使用日立HD44780LCD点阵模块显示状态参数、报警种类及键盘操作等,使用一个6位A/D转换器作键盘输入识别以减少对I/O口的占用;

(4)存储关键性数据,采用串行E2PROM;外界通信采用异步串行接口UART,并以此实现在系统串行编程ISSP;

(5)使用乘加器加速CPU速度;使用看门狗保证程序正常运行;使用实时时钟记录流量或故障统计的时刻;使用定时器产生所需工/变频切换时间和流量累计时间;使用OSC振荡器产生系统时钟等。

上述方案,选用Cypress PSoC系列单片机,图2中虚线部分均可由一片单片机实现,这里选用CY8C26443(28Pin Dual inline);否则,采用普通单板机/单片机,则各个模块均要设法构造,还要考虑把它们设计连成一体。

3.2 键盘输入电路的设计

键盘输入,通过一I/O口,由一6位A/D转换器识别。这里选用8个按键,用以实现参数输入、时间核对、记录查询、通信等功能,电路如图3所示。图3所示各个电阻值,据A/D转换特点和常用电阻规格系列确定。


3.3 一器多控变频电路的设计

该部分电路用以实现"手动/自动变频"和"工频/变频状态的切换"。这里选用日本富士FRN75P11S-4CX风机专用变频器,切换电路采用传统的接触器—继电器控制。变频加/减速,手动控制通过一个1-5kll的可调电阻器实现;自动控制通过0~5V的DC变化输入实现。构成如图4所示。


3.4 信号的输入与输出

设计系统应用在燃气行业,安全防护十分重要。压力、温度、差压信号的采集,现场的一次仪表全部采用一体化防曝类型,现场引入的信号采用隔离型安全栅。输出信号全部采用继电器控制,与现场控制器件隔离。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top