基于AT89S52的多功能数控电流源设计
在现代科学研究和工业生产中,精度高、稳定性好的数控直流电流源得到了十分广泛的应用。以往所采用的电流源多数是利用电位器进行调节,输出电流值无法实现精准步进。有些电流源虽能够实现数控但是往往输出的电流值过小,且所设定的输出电流值是否准确不经测试无法确定,不够直观。为此,结合单片机技术及V/I变换电路,利用闭环反馈调整控制原理设计制作了一种新型的基于单片机控制的高精度数控直流电流源。
本系统以AT89S52单片机为控制器,通过人机接口(按键和LCD显示屏)来设置输出电流,设置步进等级1 mA,并可同时显示预设电流值和实际输出电流值。本系统由按键设置输出电流值,经单片机计算后通过D/A转换器(TLV5618)输出模拟信号,再经过V/I转换电路转化成电流。单片机通过A/D转换器(MAX187)对采样电阻两端电压进行采样,经单片机处理,换算成电流值后显示在LCD屏幕上,供用户参考。实际测试结果表明,本系统输出电流可在20 mA~1 000 mA范围内任意设定,精度±10 mA,输出电流稳定,可应用于需要高稳定度、小功率恒流源的领域。
1 系统硬件结构
1.1 系统原理
本设计采用模拟闭环控制。采用AT89S52单片机作为主控制器,用D/A转换器输出模拟电压信号,再经V/I转换电路获得电流。V/I转换电路依据电流串联负反馈原理,由运算放大器和大功率三极管组成模拟闭环,使输出电流稳定。
本系统可分为3个部分:电源部分、控制部分和V/I转换部分。电源不仅要提供±5 V和±12 V供控制部分和V/I转换部分中的模拟器件使用,而且要提供大电压供V/I转换部分使用,且要有大功率输出的能力;控制部分的作用是根据用户设置值输出相应的电压信号;V/I转换部分的作用是把电压信号转化成相应的电流。各部分之间的关系如图1所示。
1.2 工作电源
使用两个变压器。大功率变压器输出经整流滤波后直接供给V/I转换部分使用。小功率变压器输出经整流滤波后通过78和79系列芯片获得±12 V和±5 V电压。大功率变压器输出经整流滤波后稳压,然后提供给V/I转换电路使用。此方案输出功率可以满足要求,且V/I转换部分电源稳定度可以保证。本电流源输出电压设置在40 V以内,因此最大输出功率为80 W,为留有裕量,大变压器选择双18 V、100 W。使用三端稳压芯片LM338K获得40 V的电压,这样LM338K输入输出压差为6V左右,输出电流2A时耗散功率为12W左右,LM338K最大输出电流达5 A,耗散功率50 W。
电源部分的电路如图2所示。
1.3 D/A转换
使用12位D/A转换器。采用12位串行D/A转换器MAX531。D/A转换器输出的电压信号加到放大器F5的同相端,F5的输出接到中功率三极管D1266A的基极,D1266A与大功率三极管2N3055组成达林顿形式。RL为负载,它接在+40 V电源和达林顿之间,与之并联的二极管是考虑到负载有可能是电感而加上的,作用是断电时消耗电感负载的能量,保护系统。R为取样电阻,阻值0.33 Ω,功率10 W,取样电阻把电流线性转化成电压信号,经同相放大器后加到放大器F5的反向端。设负载上的电流为I,反馈回路中同相放大器增益为K,输入信号电压值为U,则U= 0.33xIxK,调节同相放大器的增益,使0.33xK=1,可使U=I,这样实现了电压转换电流功能,且消除了三极管β值随温度变化带来的影响。
D/A转换的电路如图3所示。
1.4 V/I转换部分
V/I转换电路采用高精度集成运放OP07作为比较放大器,DA的输出电压经跟随器与比较器的同向端相连,比较器的反向端与采样电阻的相连,使电流预设值与测量值直接进行比较,±12 V电源为OP07提供电源电压,运放的输出电压信号控制达林顿复合三极管的导通,经模拟闭环反馈调整使电流达到设定值,TIP41(10 A)是大功率PNP三极管,在本设计中的主要功能是实现功率放大。
采样电阻将电流信号以电压的形式加到运放的输入端,由此构成的电流并联负反馈电路,可以减轻后级电路对D/A的干扰,从而得到恒流输出,大大提高了电流源的稳定性。
根据运算放大器的结构可知,负载电流仅与输入电压和采样电阻的阻值有关,而与负载电阻的大小无关。当输入电压保持不变时,负载电阻在一定范围内变化,而输出电流将保持不变,由此构成恒流源电路。本设计方案的一个主要特点是,采用康铜丝做采样电阻,康铜丝的温度系数约为5 ppm/℃,当有电流流过电阻是引起的温度升高对其阻值影响不会太大,其温度特性较好。电路中各电阻均应选用精密电阻,以达到能高的V/I转换精度。V/I转换部分电路图如图4所示。
1.5 人机接口
为了能够更好地显示更多信息,且能直接输入电流值。使用4x4键盘和LCD显示屏构成人机接口。使用AT89S52、薄膜键盘和LCD显示屏YM12864R构成人机接口。
- 基于AT89S52的智能快速充电器控制系统的设计与实现(01-06)
- PCF8563在电子时钟设计中的应用(07-02)
- 基于AT89S52程控开关稳压电源设计(07-30)
- 基于MAX 1 9 7的高精度数据采集系统(07-30)
- 开关稳压电源的设计方案、技术分析及应用实例集锦(07-01)
- 采用QCM传感器的生物芯片检测电路的原理设计(04-28)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...