PoE系统闪电浪涌及其它电气伤害保护
要点
1.较高PoE(以太网供电)功率水平可以满足室外设备的使用,这增加了遭受闪电电击和其它电气伤害的风险。
2.在设备中加一种串联限流器件,这样在闪电浪涌事件后,设备还可以恢复工作。
3.双向浪涌保护器件、TVS(瞬态电压抑制)二极管、熔丝与PTC(正温度系数)器件可有助于确保消除风险,可靠地工作。
PoE(以太网供电)已经快速地普及开来,因为它消除了独立电源以及设备连接电源线的要求,并且不需要将设备布置在有电源插座的地方。最近,PoE PSE(电源设备)可以提供的功率值也有提升,从PoE的15.4W增加到PoE+的30W。这些增长促进了潜在应用数量的增加。以太网现在能为VoIP电话提供足够的能量,能延伸无线接入点的距离,能用于监控摄像头的摇摄功能。
PoE基础
在PoE中,PSE将电能送入电缆,送入方式可以是一个开关,也叫末端接入(end SPAN),或不在电缆端点时,用中端接入(midSPAN)。PD(受电设备)是电缆上消耗电能的设备。
IEEE 802.af PoE标准将PD功耗限制在12.95W或360mA,在考虑每端口的电缆损耗后,这对应15.4W(或400mA)的PSE输出极限。这个标准考虑了最长100m的最大回路的线损耗,因此允许PSE最高为57Vdc。标称电平为48Vdc。
PoE+标准(IEEE 802.at)则允许PSE提供高达30W功率,其中Type 2设备的PD可以接受高达25.5W;而PoE+ Type 1则与PoE相同。PSE提供最大600mA电流。PoE+还要求使用5e类或6类线,其每个回路对的阻抗小于或等于12.5Ω,而PoE的这个值是20Ω。
很多公司都正在努力提升这个最大功耗极限。现在已有可提供每端60W的PSE,有一家供应商采用了一种专利的工艺,称所售中端接入PSE可以提供每端95W。但这个数字可能已接近于5类电缆的物理界限,这意味着,要获得更高的功率,设计者就必须围绕这一界限寻找一种方式。一个简单方法是增加成捆电缆的距离,从而改善散热。超极限的功率使用要求电缆有更高规格的导体。这些较高的电压既不符合IEEE 802.3af,也不符合IEEE 802.3at。
对PSE来说,关键是能为PD提供能量,而不会造成损坏。为了确定所需要的功率水平,在通电时,PSE与PD之间要有一个来回往返的信令握手过程,其中包含来自PSE的电压脉冲,用于决定所连接PD的阻抗特征。这个发现过程将系统设定为五大类中的一种(表1)。表2给出了PoE+的PoE-PD分类。
图1,在10或100BaseTX系统中的"空余"数据对,或在1000BaseT系统的4、5对和7、8对上加PoE Mode B电源。PoE使用幻像供电技术,这样在一个线对的各导线间有0V的电势差;两个导线对之间的电源电压是不同的。
PoE+的PoE-PD分类
PoE模式
PSE能够以两种方式中的一种,通过以太网电缆提供电源。在ModeB下,PSE通过10BaseT或100BaseTX系统中的4、5和7、8"空余"数据对供电,因为RJ-45只用1、2、3和6线传输数据。因此,RJ-45中的4、5和7、8线都可以用于供电(图1)。注意,PoE采用了一种"幻像"供电技术,一个线对的导线间电势差为0Vdc。电源电压是导线对的两个中心抽头连接之间的压差。
在1000BaseT应用中,不存在空余线对;因此,必须用两个有效数据线对(Mode A或Mode B)提供电源。Mode A将DC电压与信号分别通过1、2和3、6线对传输(图2)。数据线对1、2和数据线对3、6上都跨接一个有中心抽头的隔离变压器。这两个中心抽头提供DC电源,而任何线对之间的电压保持为0Vdc。这种幻象电源技术同时用于Mode A和Mode B,有助于防止用户操作单个线对时,产生意外电击危险。
图3,对10和100BaseT应用的闪电保护采用了箝位器件的组合。闪电引发的浪涌激活在次级的TVS1,提供了一个箝位功能,使有害浪涌远离敏感的以太网电路。然后,三级器件TVS2对变压器的线路驱动端提供了另一层的保护。电源故障事件(特性为长期的50Hz~60Hz波形)激活熔丝F1~F4。1000BaseT系统对其它两个数据信号采用了相同的保护机制。
Mode A和Mode B都可以用于任何以太网应用,包括10、100和1000BaseT。PSE不能同时在Mode A和Mode B下提供电源,但PD必须同时兼容Mode A和Mode B供电技术,因为无法预先判断PD将连接哪种PSE模式。
保护设备的细节以及连接方式取决于供电模式,以及以太网系统的数据速率。PSE和PD都必须能在闪电浪涌后继续运行,并且能安全地处理由UL 60950-1或EN 60950-1定义的电源故障事件,不过这些标准并不要求设备在这种测试后继续运行。
为满足这一要求,必须装上一个串联限流器件,如熔丝,它在闪电浪涌测试时不会开路,而当遇到长期交流电源故障情况时则开路;也可以用一只PTC器件,在闪电浪涌测试后仍能工作。PTC器
- 智能功率级设备展现更高的性能(07-15)
- 充电电池类型和单机快速充电器概述及设计和检测(08-05)
- 浪涌保护器在电源系统中的应用(11-14)
- 以太网口的浪涌保护电路(05-11)
- 浪涌保护器在电源系统中的安装原理及注意事项(05-11)
- 浪涌和浪涌保护器概述(02-02)