微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 一种程控开关稳压电源设计方案

一种程控开关稳压电源设计方案

时间:05-07 来源:互联网 点击:

开关频率越大,线径越小,但是所允许经过的电流越小,并且开关损耗增大,效率降低。本系统采用的频率为44K,查表得知在此频率下的穿透深度为0.3304mm,直径应为此深度的2倍,即为0.6608mm。选择的AWG导线规格为21#,直径为0.0785cm(含漆皮)。磁芯选择铁镍钼磁芯,该磁芯具有高的饱和磁通密度,在较大的磁化场下不易饱和,具有较高的导磁率,磁性能稳定性好(温升低,耐大电流、噪声小),适用在开关电源上。

控制电路设计与参数设计

控制电路选用TL494来产生PWM波形,控制开关管的导通,RT、CT选择为102K和24K,频率为44kHz。软启动电路由14脚和4脚接电阻和电容来实现,通过充放电来实现。启动时间为10mS,CT=10uF,RT=1K。13号脚接地,采用单管输出,进一步降低芯片内部功耗。TL494如图5所示。

图5 TL494内部电路方框图

效率的分析

输出功率计算公式:η=Po/Pi,输入功率计算公式:Pi=Ui×Ii。

由于题目要求DC/DC变换器(控制器)都只能由Uin端口供电,不能另加辅助电源,所以单片机及一些外围电路消耗功耗要尽量的低。为此,在设计本系统时采用超低功耗单片机MSP430F169,该系统集成了8路12位A/D和2路12位D/A,减少了外加A/D和D/A的功耗。提高效率主要是降低变换器的损耗,变换器的损耗主要有MOSFET导通损耗、MOSFET开关损耗、MOSFET驱动损耗、二极管的损耗、输出电容的损耗和控制部分的损耗,这些损耗可以通过降低开关频率等方法来降低。

各级损耗主要有导通损耗、开关损耗、门级驱动损耗、二极管的损耗和输出电容的损耗。

具体损耗如下:

导通损耗和开关损耗,主要是针对开关管来说的,选取IRP540,功耗为0.4W。

另外一个主要损耗为二极管损耗,二极管正常导通压降为0.7V,损耗Pd=0.7V×Ii。降低门级驱动和输出电容损耗,主要是通过选取低功耗的器件和低ESR的电容。

保护电路设计与参数设计

康铜电阻的大小选择:康铜丝主要起过流保护和测试负载电流两个作用。康铜丝接在整流输入地和负载地之间,越小越好,这样会使两个地之间的电压很小。但是如果太小的话,干扰问题会造成过流保护的误判,并且对于后级运放的要求也比较高。经过实验,选择0.1欧姆的电阻效果比较好。由于电阻太小,难以测量,所以先测得1欧姆的电阻,然后截取其长度的十分之一。

TL494片内有电流误差放大器,可用于过流保护。将康铜电阻上的压降与预先调好的值进行比较,若电流过大,输出高电平,阻止PWM信号产生,开关管处于关断状态,使输出电压降低,形成保护功能。一旦输出电压降低,导致输出电流降低,检测电压降低,电流误差放大器就会输出低电平,重新产生PWM波形,所以该电路具有自恢复功能。

数字设定及显示电路的设计

由于在输出端采样时测得反馈电压为输出电压的二十四分之一,即分压为1.5V时输出为36V,分压为0.834V时输出为30V,设计中采用了12位D/A转换精度为0.61mV(参考电压为2.5V),直接输出给TL494提供参考电压。此外还设置了三个A/D芯片,分别采集输出电压、输出电流和输入电流。为了降低功耗,设计中采用了128×64屏幕,显示内容多。当背光不使用时自动关闭,以降低功耗。

硬件电路设计

主电路如图6所示。

主CPU PCB如图7所示。

图6 主电路图

图7 主CPU PCB

软件设计

本设计的软件设计比较简单,完全出于效率的要求,把外围电路设计的尽可能的少,所以单片机驱动外围芯片均采用I/O口直接控制,没有采用总线方式。整体软件设计流程图如图8所示。

图8 整体软件设计流程图

结论

通过寻找一系列资料和电路的设计、调试,最后取得了非常好的效果,各个技术指标都达到很高的水准。但该电路仍然存在很多问题,例如采用超低功耗单片机在电源设计中,单片机的抗干扰能力不好,以后应多加注意。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top