微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 宽带交流耦合ADC驱动器的设计

宽带交流耦合ADC驱动器的设计

时间:03-05 来源:互联网 点击:

D6645利用一个2.2 V p-p差分信号操作,共模电压为+2.4 V.这意味着D4937的每个输出必须在1.85 V和2.95 V之间摆动,即在+5 V单电源运行的D4937-1的输出驱动能力范围内。

输入信号因此必须在1.025 V和1.575 V之间摆动,落入在+5 V单电源运行的ADA4937-1的允许输入范围内。

电路输入由一个50 来源驱动。在单端配置中"自举式"输入阻抗约为267Ω 。61.5Ω 输入终端电阻与267Ω增益设定电阻并联使得整体阻抗约为50 Ω。注意,228 Ω电阻是与反相输入串联插入的。这是为了匹配同相输入的净阻抗(200 Ω + 61.5 Ω||50 Ω= 200 Ω+ 28 Ω= 228Ω)。

没有此额外28Ω匹配电阻与最初200Ω增益设定电阻串联,不平衡源阻抗会导致一个不必要的差分失调电压出现在输出端上。

底部增益设定电阻从200Ω增加至228Ω需要反馈电阻增加至207Ω以便保持增益1.实际上,最近标准1%电阻会代替计算值。ADIsimDiAmp设计工具用来方便这类设计并计算特定增益和源阻抗的所需电阻值。该工具还检查是否违反差分放大器的输入和输出共模范围限制。

ADA4937-1的输出噪声电压频谱密度只有5 nV/√Hz.该值包括反馈和增益电阻的贡献并适用于G = 1.这在AD6645的输入带宽(270 MHz)上积分,产生103 V rms的输出噪声。这对应于放大器所引起的77.6 dB SNR.注意,由于没有任何外部噪声滤波器,积分必须在ADC的完整输入带宽上。

AD6645的SNR为75 dB,对应于138μV rms的输入噪声。由于运算放大器(103μV)和ADC(138μV)所引起的组合噪声为172μV,产生73 dB的整体SNR.

如果不需要AD6645的完整带宽,可通过选择适当的C值来增加一个单极降噪滤波器。

适合中频应用的宽带交流耦合ADC驱动器

在图6所示的示例中,我们数字分析了AD9445 14位125MSPS ADC的宽带信号,希望尽量保留ADC输入带宽。因此没有任何中间级噪声滤波器。

图6:AD8352 2GHz 差分放大器驱动AD944514位 125MSPS ADC

在100 MHz时,AD9445输入带宽为615 MHz,SFDR为95 dBc.对于驱动器,我们挑选了AD8352 2 GHz带宽差分放大器,因为其电阻可编程增益范围为3 db至21 dB.该放大器还具有低噪声(对于10 dB增益设置,等效输入噪声为2.7 nV/Hz)、低失真(100 MHz时82 dBc HD3 )。带宽要求的更低端约为10 MHz.

图6所示为在宽带应用中利用2 GHz AD8352驱动AD9445的最佳电路配置。巴伦将单端输入转换为差分以驱动AD8352.尽管可配置AD8352以接受一个单端输入(见AD8352数据手册),但如果按图所示以差分驱动,则获得最佳的失真性能。选择CD/RD网络是为了优化AD8352的三阶交调性能。这些值是基于所需增益而选择并在数据手册中给出。

该电路对于105 MSPS采样的98.9 MHz输入信号产生83 dBc的SFDR.

G = 10时AD8352的输出噪声频谱密度为8.5 nV/Hz.由于没有任何输入滤波器,这必须在AD9445的整个615 MHz输入带宽上积分。组合放大器和ADC的SNR为67 dB.

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top