等面积PWM调制在变频调速系统的实现
引言
随着电力电子全控型开关器件的出现和发展,脉宽调制技术(PWM)在电力电子变流技术中获得了广泛的应用。相比较于硬件实现方法,采用软件计算的实时PWM控制策略已被接受,并出现了许多不同的PWM波的发生方法,如采样SPWM法、谐波注入PWM法、均值PWM法、等面积PWM法等。更有将逆变器与负载作为整体建立PWM控制策略的方法,如电动机变频调速领域常用的基于电动机气隙磁通轨迹最圆的磁通轨迹法PWM控制、基于电动机电磁转矩自调整的PWM控制、基于状态方程和输出反馈信号推算的无差拍PWM控制等[1]。
文献[2]推导了基于整流器网侧电流矢量推导出同步旋转坐标系下PWM整流器的数学模型,详细介绍了基于电流前馈解耦的PWM整流器双环控制系统设计方法,并应用TMS320LF2407A建立了PWM整流器的DSP数字化系统;文献[3]针对大功率应用场合的单相PWM整流器,探讨了一种适用于单相PWM整流器的网侧电流3次谐波抑制方法,分析了单相PWM整流器的工作原理和网侧电流的3次谐波产生原因,并将该新型谐波抑制方法与常规控制算法进行了分析对比。文献[4]依据冲量效果不变理论,给出了采用直接面积等效法计算三相SPWM波的方法,并进行了基于FPGA的发生器软、硬件设计,取得了较好的变频调速效果。
等面积PWM法
等面积PWM法的基本思想是使相同时间间隔内的PWM波的面积与调制波的面积相等[1],正弦波等面积PWM法的调制原理为:假定一个周期内PWM波的脉冲数为2N,将参考正弦波的整个周期T分为2N等分,则每个区间的长度为,在第i个区间正弦波的面积为:
设输出PWM波的幅值为Ud, 采用双极性调制后,第i个区间内的PWM波形平均值为:
考虑到有,令,由式(1)、式(2)整理可得:
令,式中为调制深度。
的表达式中虽包含有三角函数的计算,但它仅与N有关,一旦N确定后,可实现将计算好的存入内存中,需要时通过查表方式获取即可。从k的表达式可以看出,k正比于调制深度而反比于基波频率。对于通用型交流变频调速系统来说,通常使为常数来达到恒转矩控制,若用等面积PWM调制实现时,此时只需使k值为一个常数即可。
综合上述分析,等面积PWM法的脉冲换相点计算公式为:
由于等面积PWM法生成的PWM波形在处是点对称的,因而可推导出
等面积PWM法具有算法简单、占用内存少、产生的PWM波形对称等优点,并且PWM波脉宽与调制深度M存在一定的线性关系,易于实现变频调速的恒压频比控制。
PWM发生器的设计要求
对于变频器来说,采用微机生成PWM波时,必须事先确定好载波比N(或者2N)。如果频率变化较大,那么在整个频率范围内采用同一个载波比的同步调制方案,难以兼顾高频和低频输出时的性能。针对于此,最常采用的方法是分段同步调制,即在不同的频率段选择不同的载波比,使变频器在整个频率变化范围内,都有一个较为合理的PWM开关频率,以获得较好的性能。载波比的选择和切换必须注意以下两点:切换时不出现电压的突变;在各切换临界点处需设置一个滞环区,以避免输出频率落在临界切换点附近时造成载波频率反复变化而引起的震荡现象[1]。
桥臂互锁和死区时间,逆变器同一桥臂上下两管的驱动信号必须互锁通断以防止桥臂直通而发生断路,而且两驱动信号间必须留有一定的死区时间,以防止一管还未完全关断时另一管便开始导通的短路故障。此要求可以在单片机PWM波的计算程序中加以考虑。
初始状态及故障封锁,任何款式型号的CPU,工作前总存在复位状态,此时CPU各I/O输出口为全"1"或全"0",设计时应避免在此复位状态时造成所有开关管都被驱动导通的危险,因此应将CPU复位时的初始电平值设置成开关管驱动信号无效状态。此外,当发生故障时,也可以通过输出故障封锁信号来关闭驱动信号[1]。
实际设计PWM控制器时,还应考虑满足一般变频系统的要求[5]。对交流变频调速而言,PWM控制器提供逆变器的触发信号,而控制对象是交流异步电动机,具体来说应考虑:①逆变器的要求。在保证桥臂互锁和死区时间的同时,为减少逆变器器件的开关损耗,应合理选择控制器输出的开关频率。②异步电机的要求。低频时,应考虑对电机定子绕组的补偿系数;变频过程应使电压相位平滑转换以保证电机气隙内磁场能连续旋转;可逆旋转时,应先降速到最低频率,然后送出逆序电压,再升频到指定值。另外,整个变频过程还应设置合适的频率变化率,使得电机的动态工作点选在其机械特性的直线段,使频率的变化率与电机转速的跟随相适应。③改善调速性能的要求。本文采用有级同步式控制,即把调频范围划分为7个频段,每个频段内
- 变频器在变频调速时对普通异步电机的影响(08-13)
- 共用直流母线变频调速技术(01-31)
- 多电压等级恒功率输出场合中变流器的设计(02-06)
- 非pwm功率单元在完美无谐波高压变频器中的设计应用(02-14)
- 基于SVPWM算法的变频调速系统设计方案(10-20)
- 棉纺织设备中变频调速技术的应用探讨(09-29)