微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 基于AD630实现蓄电池内阻在线测量

基于AD630实现蓄电池内阻在线测量

时间:03-15 来源:21ic 点击:


图4 AD630 器件逻辑图

图5 AD630 实现相关检测电路原理图

  3 实验结果与分析

3. 1 前置放大与滤波结果分析

设计中前置放大要求为100 倍,根据AD620 中RG计算公式R G = 49. 4 kΩ / ( G - 1) 计算出RG 为499 Ω 。
在此对电容误差为# 5% ,电阻误差为± 1% 的放大电路使用Multisim 软件进行仿真,如图6 所示,通道A 为输入信号,通道B 为经过AD620 放大后的输出信号,若输入信号有效值为13. 621 mV,则输出为1. 36*8 V,可实现精确稳定的放大。


图6 AD620 实现精确稳定放大波形

3. 2 带通滤波结果分析

带通滤波是通过一级低通滤波器和一级高通滤波器实现的。低通滤波器是采用多重反馈型的LPF,如图3 中U3 级所示,可解得该滤波器传递函数为:

使R1 = R2 = R3 = R , C1 = C2 = C, 可得:

由于当时通带截止,所以由可解得截止频率f = 0 37/ ( 2 RC ) 。按照设计要求选取R = 20 k Ω,C =1 nF,仿真得到其频率特性如图7 所示。


图7 低通滤波器的频率特性

由图7 可看出,当增益为- 3 dB 时所对应的频率为3 kHz,同理设计的高通滤波器频率特性如图8所示。


图8 高通滤波器的频率特性

        3. 3 AD630 结果分析

按照AD630 设计要求连接好电路,实现乘法效果如图9 所示,通道3 为输入信号,通道2 为参考信号,通道1 为输出信号,信号端和参考端输入1 kHz 的正弦信号,输出则为两信号相乘的结果。经过AD630 实现乘法后,再将相乘后的信号送入积分器中,可将噪声从信号中滤去,变为直流信号。在信号中混入30 dB 的噪声,通过以AD630 为核心的相关器检波如图10 所示,使通道3 为原始信号,通道4,1 分别是混入噪声和通过AD630 后的信号波形; 通道2 为积分后的直流信号,其值等于原始信号通过相关检测后的值。该设计很好地抑制了噪声,在内阻测量系统中可很好地将所需信号检测出来。


图9 AD630 乘法器输入/ 输出波形


图10 相关器检波性能

3. 4 系统测试结果分析

按照文中的思路方案设计制作了一套电池内阻在线测量系统,并与使用stanfo rd SR830 所测得的结果进行了对比。测试电池为使用一年左右的环宇牌12 V,15 A · h铅酸蓄电池,测试结果如表1 所示。由表1 的测量数据可以看出,该系统与stanfo rd SR830 的测量结果基本吻合。

图11 是一只6 V,4. 5 A · h 的蓄电池放电过程中在线测量的内阻曲线图,电池充满电后对其进行放电,放电电流选择为650 mA。放电过程中内阻值逐渐增大,在放电的初期内阻变化率很小,到后期开始有明显的变化。在蓄电池剩余容量为50% 以上时,内阻值变化很小,当容量降至40% 以下时,则内阻值有明显变化,尤其在20% 以下时,随着容量的减少,内阻值急剧增大,此时应注意对蓄电池及时进行充电,避免对蓄电池造成损害。

表1 内阻测试对比结果

 
图11 蓄电池内阻的放电特性

图12 为蓄电池充电过程中的内阻曲线图。将蓄电池放电至截止电压后,选取200 mA 电流对其进行充电,在充电过程中对内阻进行在线测量。由测试结果可看出,充电过程与放电过程的变化正好相反,刚开始内阻先急剧减小,然后缓慢变化,最后几乎不变。同样内阻的变化说明了容量的变化。


图12 蓄电池内阻的充电特性

  4 结 语

本文采用交流注入相关检测的方法实现了蓄电池内阻的在线测量,能够在不影响蓄电池性能的情况下完好无损、方便快捷、准确地测量出内阻,并投入实验教学中。同时,蓄电池内阻的在线测量,对实现蓄电池运行状态的监测有着十分重要的意义。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top