微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 动力电池组特性分析与均衡管理

动力电池组特性分析与均衡管理

时间:12-14 来源:电源网 点击:

2 动力电池组充放电特性

  以单体电池为动力源如移动电话,电源管理技术已经十分完善,但在电池组中,单体之间的差异总是存在的,以容量为例,其差异性永不会趋于消失,而是逐步恶化的。组中流过同样电流,相对而言,容量大者总是处于小电流浅充浅放、趋于容量衰减缓慢、寿命延长,而容量小者总是处于大电流过充过放、趋于容量衰减加快、寿命缩短,两者之间性能参数差异越来越大,形成正反馈特性,小容量提前失效,组寿命缩短,在下文的充放电特性分析中就必须包含过充电和过放电过程。

  2.1 充电

  目前锂电池充电主要是限压限流法,初期恒流(CC)充电,电池接受能力最强,主要为吸热反应,但温度过低时,材料活性降低,可能提前进入恒流阶段,因此在北方冬天低温时,充电前把电池预热可以改善充电效果。随着充电过程不断进行,极化作用加强,温升加剧,伴随析气,电极过电位增高,电压上升,当荷电达到约 70~80%时,电压达到最高充电限制电压,转入恒压(CV)阶段。理论上并不存在客观的过充电压阈值,若理解为析气、升温就意味着过充,则在恒流阶段末期总是发生不同程度的过充,温升达到40~50摄氏度,壳体形变容易感测,部分逸出气体还可以复合,另一些就作为不可逆反应的结果,损失了容量,这可以看作电流强度超出电池接受能力。在恒压阶段,有称涓流充电,大约花费30%的时间充入10%的电量,电流强度减小,析气、温升不再增加,并反方向变化。

  2.2 过充电

  上述过程考虑电池组总电压或平均电压控制,其实总有单体电压较高者,相对组内其它电池已经进入过充电阶段。过充电时,若在恒流阶段发生,由于电流强度大,电压、温升、内压持续升高,以4V锂为例,电压达到4。5V时,温升40度 、塑料壳体变硬,4。6V时温升可达60度、壳体形变明显并不可恢复,若继续过充,气阀打开、温升继续升高、不可逆反应加剧。恒压阶段,电流强度较小,过充症状不如恒流阶段显著。只要温升、内压过高,就伴随副反应,电池容量就会减少,而副反应具有惯性,发展到一定程度,可能在充电中也可能在充电结束后的短时间里使电池内部物质燃烧,导致电池报废。过充电加速电池容量衰减、导致电池失效,百害无一利。

  2.3 放电

  恒流放电时,电压有一陡然跌落,主要由欧姆电阻造成压降,这电阻包括连接单体电极的导线电阻和触点电阻,电压继续下降,经过一段时间以后,到达新的电化学平衡,进入放电平台期,电压变化不明显,放热反应加电阻释热使电池温升较高。放电电压曲线近似单体放电曲线,持续放电,电压曲线进入马尾下降阶段,极化阻抗增大,输出效率降低,热耗增大,接近终止电压时停止放电。

  上述过程用恒流特性模拟负载电机,实际汽车在行使中,电机输出功率的变化很复杂,电流双极性变化,即使匀速行使,路面颠簸、微小转向都使输出功率实时变化,在短时间段里,可以用恒流放电模拟分析,总之大的方向是放电,偶尔有不规则的零脉冲 (无逆变功能)或负脉冲(有逆变功能,电池被充电)出现。

  2.4 过放电

  考虑组内单体电池,必有相对的过放电情况。在放电后期,电压接近马尾曲线,组中单体容量正态分布,电压分布很复杂,容量最小的单体电压跌落得也就最早、最快,若这时其它电池电压降低不是很明显,小容量单体电压跌落情况被掩盖,已经被过度放电

  观察单体过放情况,进入马尾曲线以后,若电流持续较大,电压迅速降低,并很快反向,这时电池被反方向充电,或称被动放电,活性物质结构被破坏,另一种副反应很快发生,过一段时间,电池活性材料接近全部丧失,等效为一个无源电阻,电压为负值,数值上等于反充电流在等效电阻上产生的压降,停止放电后,原电池电动势消失,电压不能恢复,因此,一次反充电足以使电池报废。

  组中单体过放容易发生不易控制,电机控制器的限压限流办法都不起有效作用,电池输出功率的变化产生的欧姆、极化电压波动足以淹没单体电压跌落信号,组电压监视失去意义。

  2.5 经济速度与续驶里程

  传统汽车以经济速度行驶耗油最省,用百公里耗油量评价,经济速度由发动机效率、动力传动效率和摩擦力决定,电动汽车也有经济速度,由电池使用效率、电动机和控制器效率、摩擦阻力决定,经济速度与电池组内阻有直接关系,在一定范围内变化。以经济速度行驶,电动汽车能达到最大的续驶里程。固定整车和电动机,续驶里程可以考察动力电池组的能量供给能力,经济速度反映了电池组功率提供能力,电动汽车希望动力电池组能提供大容量和高功率。

  2.6 加速与爬坡

电动汽车在加速和爬坡时输出功率大,

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top