微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 通过主动输出放电功能来保护敏感和昂贵的负载

通过主动输出放电功能来保护敏感和昂贵的负载

时间:04-15 来源:3721RD 点击:


图 1:LT3066 典型应用原理图及其功能

3.3V Supply with 497mA Precision Current Limit:具 497mA 精准电流限制的 3.3V 电源

WIDE VIN RANGE: 1.6V TO 45V:很宽的 VIN 范围:1.6V 至 45V

IN:输入

INFILT PIN AND CAP IMPROVE PSRR:INFILT 引脚和电容改善 PSRR

500mA PNP OUTPUT WITH ACTIVE OUTPUT DISCHARGE:500mA PNP 输出,能够主动输出放电

OUT:输出

WIDE VOUT RANGE: 0.6V TO 19V:很宽的 VOUT 范围:0.6V 至 19V

CBYP LOWERS OUTPUT NOISE AND SOFT-STARTS VOUT:CBYP 降低输出噪声,并使 VOUT 实现软启动

图 2 显示,具备主动输出放电功能的 500mA LT3066 与类似的 LT3065 (500mA,没有主动输出放电功能) 相比的优势。

图 2:具备主动输出放电功能的 LT3066 与 LT3065 的比较
ACTIVE OUTPUT DISCHARGE FOLDBACK:主动输出放电折返
ACTIVE OUTPUT DISCHARGE:主动输出放电

LT3065 有一个 10mA 负载,LT3066 仅由设定输出电压 (本例中为 10μA) 的电阻器分压器加载。即使给 LT3066 的输出加上了很轻的负载,由于该器件提供主动输出放电功能,所以输出电压也会快速放电。相比之下,LT3065 的输出电容器仅由连至其上的 10mA 负载放电,放电速度慢得多。

就高于 7V 左右的输出电压而言,LT3066 实施主动输出放电折返,因此,用来主动输出放电的晶体管之驱动降低了,这可限制该器件消耗的功率。由于产生了折返,所以在示波器显示屏上看到,LT3066 的 12V 波形从 12V 到 7V 的放电速度不那么快。在输出电压很高和使用大型电容器时,或者万一发生故障,使输出短路至很高的电压时,这样的放电速度可以保护 LT3066 免于损坏。

具备主动输出放电功能的器件之主要优势是,器件关断时,输出处于设定的已知状态。输出始终按照预期快速放电,而无论负载处于什么状态。对停机时要求精准电源排序的应用而言,这种特性很重要。

PSRR 性能的改进
与 LT306x 系列中的其他器件相比,LT3066 通过 INFILT 引脚提高了 PSRR 性能。INFILT 引脚是一个单独的输入引脚,为误差放大器和基准供电。这个引脚通过内部 140? 电阻器连至 IN 引脚。在 INFILT 引脚和地之间连入一个去耦电容器,就形成了一个 RC 滤波器,以降低误差放大器和基准的输入电源纹波。在 INFILT 引脚上连接一个 0.47μF 去耦电容器,可在高于 10kHz 的频率上使 PSRR 改进多达 30dB。如果不需要输入滤波,那么就将 INFILT 引脚连至 IN 引脚。图 3 显示了与 LT3065 相比,LT3066 PSRR 性能的改进。

图 3:具 INFILT 引脚的 LT3066 与 LT3065 的 PSRR 比较
RIPPLE REJECTION:纹波抑制
FREQUENCY:频率

完整的 LT306x 系列
不是所有应用都需要主动输出放电以保护敏感负载,也不是所有应用都要求输出电流高达 500mA。因此,凌力尔特还开发了 LT306x 系列的另外 5 款器件,以提供一种富有吸引力的产品组合,这个系列的器件具备以下特点:高输入和输出电压、低压差电压、低输出电压噪声性能、广泛的保护功能、快速响应以及很宽的 100mA 至 500mA 输出电流。其中有的器件具备主动输出放电功能,有的器件则没有这种功能。以下表 1 突出显示了 LT306x 系列中各款器件之间的不同。

表 1:LT306x 系列 LDO 功能和特点一览

结论
新的电路设计方法和改进的芯片制造工艺丰富了基于 PNP 通路晶体管 LDO 的性能特点。凌力尔特等供应商提供的这类 LDO 具备可靠的保护功能、很宽的输入和输出电压范围、低输出噪声和快速响应,能够用单个电压源以低压差运行。新的 LT306x 系列有 6 款器件,输出电流范围为 100mA 至 500mA,其中 3 款器件还提供新的完整双重作用主动输出放电功能,这种功能非常适合用在图像传感器和高可靠性系统中,以保护敏感、昂贵的负载,同时实现精准的电源排序。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top