解析在PCB设计中采用时间交替超高速模数转换器
数字交替方法
模拟校准是实现高动态范围、高整体集成解决方案的行之有效的方法,其集成的时钟相位、增益和偏移调整功能可提供高精确度。
模拟校准的可行替代方法是用于交替数据的数字校正算法。此方法寻求在数字域校正数据转换器失配,而不需要任何模拟偏移、增益或相位校正。理论上,这些算法可独立工作,不需要实现校准或了解输入信号。此外,数字偏移、增益和相位校正因素的汇合时间也是关键系统指标。
SP Devices公司开发的算法经过验证是符合这些条件的一种数字后处理方法。SP Devices的ADX技术持续提供模数转换器的增益、偏移和时间偏差误差的后台估计值,而不需要任何特殊校准信号或后期微调。此算法对于校正静态和动态失配误差很有效。
ADX技术估计误差,并使用抑制的全部失配误差重新构建信号。IP-core的误差校正算法对于任何输入信号类型均有效。该数字信号处理的结果超出ADX核心的时间交替频谱,并消除了与失配相关的明显交替失真杂散信号。
配备两个ADC0830003GSPS、8位模数转换器的美国国家半导体参考板展示了SP Devices的算法。数据转换器使用板上FPGA中内嵌的ADX技术实现交替。图3为7GSPS数字化卡的框图。
图3:含LMX2531和LMH6554的ADQ108系统框图。
图4是SPDevicesADQ108数据采集卡的输出频谱性能图。值得注意的是杂散峰值部分是由于谐波失真所致,交替杂散信号已大幅减少。
图4:采用ADX技术的模数转换器组合频谱。
超高速模数转换器支持电路
为了实现使用ADC083000等数据转换器可达到的高级性能,需要确保支持电路具有与数据转换器本身相匹配的性能。支持电路的关键要素包括:
1)高性能、低抖动时钟源。
2)用于驱动模数转换器输入的高线性、低噪声放大器或平衡/不平衡变换器。
建议使用LMX2531或LMX2541时钟同步器生成低抖动模数转换器时钟信号,使用LMH6554驱动模数转换器模拟输入。
LMX2531集成了锁相环(PLL)和VCO,并提供优于-160dBc/Hz的噪声底。可提供多种版本芯片接纳553MHz至2790MHz的不同频带。
为了实现更好的高输入频率SNR性能,建议使用较低相位噪声LMX2541作为适合的时钟源。LMX2541在2.1GHz具有小于2毫弧度角(mrad)均方根的噪声,在3.5GHz具有小于3.5mrad均方根的噪声。LMX2541的锁相环具有-225dBc/Hz的校正噪声底,能在整数和分数模式中以最高104MHz相位检测速率(比较频率)工作。
LMH6554是业界最高性能的差分放大器。LMH6554的低阻抗差分输出可用于驱动模数转换器输入和任何中间滤波级。这种宽频全差分放大器可驱动8位至16位高速模数转换器,在800MHz以下具有0.1dB增益平坦度,在250MH时具有72dBcSFDR,并具有0.9nV/sqrtHz低输入电压噪声性能。
LMH6554在75MHz以下具有16位线性度,可驱动2V峰-峰电压至最低200欧姆负荷。LMH6554通过外部增益设置电阻器和集成共模反馈,可使用差分-差分或单端-差分配置。放大器提供最高1.8GHz的大信号带宽,8dB噪声和6200V/μs转换速率。
图5显示使用上述支持元件的典型应用框图。
图5:典型系统框图。
总结
本文阐述了交替高速模数转换器的难点和解决这些问题的几种方法。由于交替技术、低抖动时钟源和高性能放大器的进步,现在可以实现保持超过6GSPS的优异动态性能。
- 电源管理总线的结构与优势(11-19)
- 如何设计一个合适的系统电源(上)(11-20)
- 新型灌封式6A至12A DC-DC μModule稳压器系列(11-19)
- 如何设计一个合适的系统电源(下)(11-20)
- PCB电源供电系统的分析与设计(11-21)
- LVDS技术原理和设计简介(01-26)