微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 基于D类功放PWM的探讨

基于D类功放PWM的探讨

时间:11-27 来源:互联网 点击:

成本也得到了很好的控制。

因此,该调制模式在大功率(300W)以上的功放产品中得到广泛应用。由于输出波形为交流信号,随着波形起伏,载波频率随之变化,载波频率将在一个较大的范围(如:200-400kHz)内波动,EMC的噪声频率将会较均匀的分布在一定区域内。因此EMC方面的问题也得到一定的改善。闭环反馈信号可以从LC滤波之前反馈,也可从负载喇叭端反馈。前者系统较为稳定,失真度稍逊。后者在负载有较大变化时,可能会出现不稳定的现象。由于反馈信号为喇叭端,所以LC的非线性失真能够得到很好的抑制,因此失真度方面较有优势。

3.2.3 改善与发展

随着变频自激调制方式的运用越来越多,相应的优化技术也得到了发展。比较简单的如:积分环节使用二阶积分电路。复杂的则是双闭环是双闭环的引入:既在LC滤波前反馈,又包含喇叭端的反馈。使用双反馈的目的可以带来稳定性和保真度方面的双重好处。目前在少数发烧级功放产品上有应用。当然双反馈对于参数的依赖和器件的模型化要求较高,各方面的精确性均会影响到实际效果。此种应用一旦被工程技术人员广泛掌握,D类功放的性能也将全面得到提升。

4.系统仿真

仿真采用MATLAB进行仿真。基本仿真环境为:电源电压为+/-160V,负载阻抗40ohm;5000Hz音频信号;调制载波频率为200k-400kHz.滤波电感为60uH,滤波电容为0.2uF.主要测试指标为THD.

4.1 定频脉宽调试仿真

4.1.1 基于200kHz载波下的仿真结果及200kHz载波作为仿真分析案例

未加A记权情况下THD达到10%,该指标只能满足入门级功放的标准。该图3-2中的黄色部分波形线条上载波明显且幅度较高。图3-3中200kHz位置能量谱较高且集中,仅低过信号波形30dB.EMC方面具备较多的问题。

4.1.2 基于200kHz载波下的仿真结果及分析

400kHz载波作为仿真分析案例,未加A记权情况下THD达到2.8%,该指标能够满足多数家庭功放的使用要求,但仍然不能应用于专业功放。载波峰值低于信号幅度40dB.

提高载波频率后无论是在失真方面还是在EMC方面均有较高幅度的改善。由此可以判断:使用更高频率的载波将会进一步提高功放性能。然而高频率的载波需要更高快速的器件,在现有技术情况下将会遭遇成本大幅提升的问题,且大功率的高速器件更是难以做大。

4.2 闭环自激变频脉宽调制

比较器延迟不能高于30ns.空载400kHz载波,满载200kHz时的仿真结果:

闭环自激调制模式下,频率范围在200-400kHz间移动,未加A计权条件下THD达到了0.7%.在实际应用中加入A计权,THD可低于0.1%,即可满足专业级HIFI功放的要求。载波频谱分摊到各个频率段,幅度低于信号幅度55dB,效果较理想。

5.结论

定频脉宽调制结构简单,小功率应用成本低廉又可满足多数普通用户要求。自激变频脉宽调制结构较复杂,在性能方面尤其大功率功放方面具备较高优势。根据用户需求和应用领域,选择最适合的,才是科技和应用的最佳结合点。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top