电源变换器中电流模式和电压模式间的相互转化
图2:电流模式的控制系统图
电流模式的Buck变换器需要精密的电流检测电阻并且这会影响到系统的效率和成本,但电流模式有更多的优点:①反馈内在cycle-by- cycle峰值限流;②电感电流真正的软起动特性;③精确的电流检测环;④输出电压与输入电压无关,一阶的系统容易设计反馈环,动态响应快、系统的稳定余量大稳定性好,增益带宽大,即便是输出只用陶瓷电容,也容易设计补偿,补偿管脚只用简单RC网络就能对输出负载瞬态作出稳定响应;⑤精确、快速的电流均流,易实现多相位/多变换器的并联操作得到更大输出电流;⑥允许大的输入电压纹波从而减小输入滤波电容,提高了输入的功率因素;输出允许用陶瓷电容,因此这种模式更省空间、省成本、体积更小、价格更便宜。但是,峰值电流模式中占空比大于50%时,系统的开环不稳定,产生次谐波振荡;而且系统会受到电流噪声的干扰而误动作。
理想的电压模式向电流电模式转化
3.1 1理想电压模式中输出电容ESR取样形成的平均电流模式理想的电压模式
在一定的反馈网络参数下,很难在整个电压输入范围和输出负载变化范围内都能稳定的工作。输出负载变化可以通过加大输出电容同时使用ESR值大的电容来优化其动特性,尽管这样做导致系统的成本和体积增加,同时增大输出的电压纹波。通常,从直观上理解,输出电容ESR和输出电容形成一个零点,对于电流模式,这个零点不是必需的,因为电流模式是单阶的系统,而且这个零点导致高频的增益增加,系统容易受到高频噪声的干扰。所以电流模式或者使用ESR极低的陶瓷电容,使ESR零点提升到更高的频率,就不会对反馈系统产生作用,或者再加入一个极点以抵消零点在高频段的作用,加入极点的方法就是在ITH管脚并一个对地的电容。
电压模式是LC形成的二阶系统,这个零点的引入可以一定的程度上抵消LC双极点的一个极点,使其向单阶系统转化。ESR越大,作用越明显。因此电压模式输出电压通常使用ESR大的电容。
另一方面,注意到,输出电压为:
VCO为输出电容的容抗上的电压,?IL为电感的纹波电流,?IL=α?Iout,α为电流纹波系数,一般取0.2 ~ 0.4.
输出电压的小信号值为:
若ESR小,式中后面的一项基本可以忽略;但是,由于电压模式通常使用ESR值较大的输出电容,这样ESR就不可以忽略,由于ESR的作用,相当于在输入电压的反馈信号中引入了一定程度的电流模式,电流模式反馈量为:?(ESR ?α? Iout )
输出电容的ESR将采样的电流信号送到电压误差放大器的输入端,和输出电压信号加在一起,经过电压误差放大器放大,再送到PWM比较器,其工作的原理相当于平均电流反馈。在电压模式中,使用ESR大的输出电容,相当于引入一定程度的平均电流模式,从而增加系统对输出负载变化的动态响应,提高系统的稳定性。
3.2理想电压模式中输入电压前馈形成的电流模式
对于输入电压的变化,目前通常采用输入电压前馈技术,来提高系统对输入电压变化的响应。输入电压前馈如图3所示。图中的实线锯齿波为内部时钟信号产生的斜率固定为k的正常锯齿波,在没有电压前馈时,产生的占空比为d ? Ts,则有以下公式:
Vc = k *d * Ts
输入电压前馈就是在内部锯齿波上加入随输入电压变化的斜坡,或者从VC信号减去此斜坡。当输入电压突然增加时,内部锯齿波和外加斜坡之和的波形为图3中的虚线所示。
若外加斜坡的斜率为ks,则总的斜率为:k + ks,注意到:ks∝Vin,也就是ks = k Vin ?Vin,所以此时的占空比为:
即:占空比随输入电压的增加立刻而减少,系统提前对输入电压变化做出相应的响应。
图3:电压模式的电压前馈
若不考虑效率,由功率平衡可以得到:Vin ? Iin = Vout ? Iout,所以有:
从上式可以看到,所加的输入电压前馈信号也就是输入的电流信号。事实上可以这样理解:输入电压前馈技术也就是在理想的电压模式中,叠加一定的电流反馈,以形成一定的电流反馈,从而增加系统对输入电压变化的响应。
理想的流模式向电压模式转化
4.1轻载时电流模式趋向于电压模式电压模
电源系统进入轻载或空载时,变换器通常工作在突发模式和跳脉冲模式[3].对于跳脉冲模式,变换器进入非连续电流模式,高端的开关管的开通时间为控制器所设定的最小导通时间,同时在有一些开关周期,高端的开关管不导通,也就是屏蔽,或跳去一些开关脉冲,以维持输出电压的调节。注意到:在轻载或空载时,电流信号很小,系统也很难检测到电流信号,另一方面,由于高端的开关管的开通时间固定为最小导通时间,已不受电流检测信号的调节,电流反馈事实上已经不起作用,也就不参与到反馈环节。系统此时工作于标准的电压模式。
对于突发模式,输出电压完全由滞洄比较器控制,滞洄比较器控制通过检测输出电压的变化,将输出电压设定在允许的上限和下限的范围内,系统此时也是工作于标准的电压模式。
4. 2使大的电感值趋向于电压模式
输出电感的选择及设计是基于输出DC电压的稳态和瞬态的要求。较大的电感值可减小输出纹波电流和纹波电压,减小磁芯的损耗,但在负载瞬变过程中改变电感电流的时间会加长,同时增大电感的成本和体积。较小的电感值可以得到较低的直流铜损,但是交流磁芯损耗和交流绕线电阻损耗会变大。
同时使用大的电感时,电感电流的斜率减小,在理想的状态下,若电感值为无穷大,那么在整个开关周期,电感电流为直流值,电流检测信号就不在起作用,也就是标准的电压模式。因此使用的电感值越大,工作于电流模式的控制就越接近于电压模式,在负载瞬变过程中,系统动特性越差。因此对于电流模式,折衷的方法是选择电感纹波电流峰峰值在输出负载电流额定值的20%到40%之间。
4. 3斜坡补偿的电模式趋向于为电压模式
理论上,当占空比大于50%时,电流模式就要加斜坡补偿,系统才能稳定的工作。否则,就会产生次谐波振荡。在实际的应用中,占空比大于40%时,就要加斜坡补偿。占空比大于50%时,斜坡补偿,由于电感充分激磁,而去磁不足,因此输出的电压将比预设定的值高,并将继续升高,直到较慢的电压控制回路调整电流设定点为止,然后输出电压又下降至低于期望值,形成次谐波振荡,其典型的特性就是在一个开关周期,脉冲宽度较宽,在下一个开关周期,脉冲宽度变窄,在每三个开关周期,脉冲宽度又变宽,如此反复。此时可以看到输出电压不稳定,有时还可以听到音频的噪声。
- 可对储能器件进行安全且快速充电的通用型电流源(03-13)
- 采用电流差分跨导放大器的电流限幅器及其应用(02-21)
- 基于MoCCCⅡ-C的二阶多功能电流模式滤波器(04-05)
- 基于MO-OTAS和CCCII电流模式通用滤波器(10-29)
- 解决SMPS应用中电流模式控制的设计问题(01-01)
- 电流模式降压控制器的精确控制环路(05-20)