微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 解决SMPS应用中电流模式控制的设计问题

解决SMPS应用中电流模式控制的设计问题

时间:01-01 来源:EDN 点击:
早期开关电源(SMPS)设计采用的标准控制方法称为"电压模式"操作。斜坡发生器驱动电压比较器的一个输入端,来自误差放大器/环路滤波器的误差信号驱动另一个输入端,见图1。得到的是仅基于电压误差信号的PWM脉冲。该工作模式下的电路具有以下两个局限性:一是没有保护电路元件的限流功能,二是对输入输出的瞬态变化响应缓慢。

电流模式控制

随着SMPS设计的成熟,一种称为"电流模式"控制的更安全的系统正逐步进入设计师的视线。该系统使用由电感电流驱动的电流反馈信号取代了斜坡发生器。用这种方法得到的系统的电感峰值电流由误差信号直接控制,从而根除了可能由过电流条件导致的电路故障,见图2。由于电流模式控制的是电感电流,因而可有效地消除控制回路中由电感产生的"极点"和延迟,从而提高系统的瞬态响应速度。

图1 电压模式控制
图2 电流模式控制

斜坡补偿的重要性

大多数模拟电流模式PWM控制器的一个显著问题是其只能测量峰值电流。因输出电容是对平均电流进行积分以产生所需输出电压,因此实际上需要的是测量平均电流的能力。通常,平均电流可以近似为峰值电流的一半。对于占空比小于50%的情况,在启动下一个PWM周期前,电感电流有足够的时间衰减到0。只要电感电流在PWM周期末达到0,平均电流就等于电感峰值电流的一半,见图

图3 占空比小于50%时,平均电流近似为峰值电流的一半

通常这种设计方案是可行的,但是当占空比大于50%时,有些问题就会显现出来。主要原因是平均电流不再近似为峰值电流的一半,见图4。

图4 占空比大于50%时,平均电流大于峰值电流的一半

随着PWM占空比在大于等于50%的条件下继续增加,平均电流就会越来越大于用测量峰值电流估计的值。得到的输出电压将会高于预期,并且持续上升直到较慢的电压控制回路重新调整电流设定点。输出电压会下降到预期电压以下,然后重复此过程(称为子周期(sub-cycle)振荡)。

为解决电流模式的不稳定性问题,针对模拟电流模式控制器开发了名为"斜坡补偿"的技术。通过在电压误差放大器生成的电流阈值上添加一个下降沿锯齿波电压,见图5,为限流比较器生成新的电流阈值,使其能更紧密地跟踪平均电感电流。

图5 斜坡补偿

数字电流模式控制中的设计问题

采用数字电流模式控制克服了模拟电流模式PWM控制器的许多局限性。SMPS中的数字电流模式控制非常有价值,因为它提供了许多功能,如晶体管峰值电流保护、消除磁性元件中的磁场"棘轮效应"、输入电压变化抑制和简单的控制回路补偿。实现电流模式控制会带来另一个好处,即使用误差电压控制电感电流的最大值,使电感成为电压控制的电流源。作为电流源,电感不再在回路的频率响应中产生极点。这样,回路从无条件不稳定电路变为有条件稳定电路,这使得环路滤波器设计更加简单。既然电流模式是如此优越的系统,为什么数字SMPS设计师仍然使用电压模式控制呢?

许多DSC没有模拟比较器和可以在PWM周期的适当点测量电感电流的ADC。缺少某些方法以在期望点及时精确地测量电流,DSC就必须不停地在PWM周期用ADC测量电感电流,以捕捉当电感电流达到期望值的"瞬间"。为了达到12位分辨率,需要在每个PWM脉冲进行多达2048次ADC电流转换。所需的ADC的采样速率为10亿次/秒。另外,需要充足的处理能力来收集这10亿次转换,将每次转换结果与误差信号相比较,并在达到预期电流时,关闭PWM输出。保守的说,这意味着需要一个每秒能执行10亿条指令(BIPS)的处理器。显然,这不是一种解决该问题的低成本设计方案。

DSC简化了SMPS电流模式控制的设计

那么设计师如何在数字SMPS设计中实现电流模式控制?答案就是使用具有支持SMPS设计的外设的最新数字信号控制器(DSC)。

当用DSC实现SMPS设计时,有很多可行的方法可用来执行电流模式控制。例如,Microchip的dsPIC30F202X DSC有以下特性:高分辨率数字PWM发生器、以每秒两百万次的采样速度异步采样和转换信号的ADC、带相关的10位参考数模转换器(DAC)的高速模拟比较器、30MIPS高性能具备DSP处理能力的控制器。

片上DAC为模拟比较器提供了可编程的阈值,软件可以随时更新这些参考DAC的值以设定峰值电流限制。

数字电流模式方法的关键在于使用具有特定片内PWM外设(其工作方式与分立式电流模式PWM发生器相同)的DSC,见图6。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top