LM3444/LM3445 非隔离式LED照明应用改进型线性稳压解决方案
摘要
本文基于LM3445的传统非隔离式解决方案,详细说明其工作原理。我们将对这种线性稳压公式进行推导和分析。通过实际实验结果对计算结果进行验证,并证明其能够非常紧密地匹配。为了评估大批量生产的可行性,我们对输出电流容限进行了彻底的研究和分析。结果证明,传统解决方案难以达到全部批量生产电流容限,特别是在当前市场所要求的更高输出应用的发展趋势下更是如此。
为了解决这个问题,我们建议使用一个简易线性稳压补偿电路。我们从理论计算和实验测量结果两个方面,对这种建议解决方案进行了验证。根据推导的输出电流和线性稳压速率公式,对实际批量生产所要求的最终总电流容限进行分析。根据所得结果,我们发现,在达到这种实际要求方面,实现了巨大的进步。最后,基于样机对测试结果和计算结果进行比较;经证明,它们非常匹配。
1、 引言
随着LED室内照明的日益增长,非隔离式方案和隔离式方案都变得越来越流行。特别是,高线性稳压的高PF和精确恒定电流模式方案成为市场的主导方案。但是,由于输出电压变得更高更宽,传统LM3444/L3445非隔离式应用无法达到这种宽余量要求,从而进一步限制了LM3445/LM3445的应用。
鉴于上述问题,本文的主要目标在于精确线性稳压要求的高输出应用。在本文中,通过第2章的一些公式,阐述一般工作原理。利用这些公式,我们可以求解最终输出电流。为了对结果进行评估,第3章介绍了一个统一公式,通过它输出电流得到简化。另外,第3章还进一步详细说明了电流容限分析。第4章给出了一些基于样机的设计例子。文章给出了计算结果和仿真结果,并把它们与实验结果进行比较。经证明,它们的匹配非常好。但是,深入研究后,我们发现仍然很难达到批量生产的电流容限要求。
为了解决这个问题,我们在第5章提出了一个建议补偿电路。通过计算和仿真实验,对这个补偿电路进行了验证。最终,实验证明,该电路明显改善了线性稳压和电流容限性能。利用这种电路,得到改进的线性稳压将在实际应用具备更强的竞争力,特别是在LED R30/PAR30/A19/E27 LED照明应用中。
2、 传统非隔离式LM3444/LM3445解决方案的原理
图1显示了更高PF的传统非隔离式解决方案。为了方便讲解其工作原理,我们给参数做如下定义:
•Vout:LED输出电压
•I:单时间段内等效时间值
•Kfeed:输入AC电压的前馈系数
•Rs:电流检测电阻器
•Rup:toff充电电阻器
•Cchar:toff充电电容器
•Vinmin:AC输入电压最小值
•Vinmax:AC输入电压最大值
•Vinac:AC输入电压
•_noimp:无改进线性稳压电路函数
•_imp:改进线性稳压电路函数
图1 高PF的传统建议非隔离式解决方案
这是一种典型的无反馈环路应用,但是它具有下列特性:
1、 更高的PF。通过输入前馈电路实现。
2、 恒定电流。这是通过LED输出电压检测toff电路实现。
AC输入电压可表示如下:
如图1所示,C1大于C2,目的是实现更高的PF值,例如:C1/C2 = 220n/10n。LM3444或者LM3445的针脚5的电压可以表示为:
toff的充电电流为:
进行实际计算时,Veb_Q1可选择0.6作为参考设计。
因此,toff可写为:
频率可以表示为:
电感器的纹波电流为:
因此,最大电流和平均电感电流公式可写为:
那么,LED输出电流为:
3、 基于传统解决方案的LED电流线性稳压分析
由于LED电流已在上面做了推导,因此我们可以把总公式写为:
为了推导每个输入电压的LED电流变化,可对公式(10)进行简化,因为Vout一般小于Vinac,并且Vout大于Vbe_Q2。公式可简化为:
那么,整个输入范围内的LED电流变化可利用公式(11)推导出。
我们可以看到,LED电流变化严重依赖于Vout,其意味着当LED电压较低时它可以使用更高的线性稳压,在这种情况下,其非常适合于GU10应用。
3.1 批量生产期间Δ LED电流变化分析
公式(11)推导出LED电流变化,但是这种变化在整个输入范围受Rs、L、Cchar和Rup容限的影响。根据批量生产要求,我们对其进行如下分析:
1、 批量生产时Δ LED电流变化受Rs(例如:2%容限)影响如下:
2、批量生产时Δ LED电流变化受Rup(例如:2%容限)影响如下:
3、批量生产时Δ LED电流变化受Cchar(例如:10%容限)影响如下:
4、批量生产时Δ LED电流变化受L(例如:16%容限)影响如下:
5、批量生产时某个Vled下的Δ LED电流变化极端情况如下:
正常情况下,相比LED电流变化,这种总变化非常小。
3.2 批量生产期间的LED电
LM3444 LM3445 非隔离式LED照明 线性稳压 相关文章:
- 五类主要线性稳压器的优缺点及其应用领域分析(01-09)
- 什么线性稳压电源及其特点 (01-18)
- 低压差线性稳压器设计要点(11-29)
- 一种快速响应LDO环路设计(06-28)
- 具有高电源抑制比性能的线性稳压器(01-22)
- 三端集成线性稳压器的电路原理及应用(11-15)