微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > LTC4366浪涌抑制器工作原理详解

LTC4366浪涌抑制器工作原理详解

时间:08-02 来源:3721RD 点击:

LTC4366浪涌抑制器可保护负载免遭高压瞬变的损坏。通过控制一个外部N沟道MOSFET的栅极,LTC4366可在过压瞬变过程中调节输出。在MOSFET两端承载过压的情况下,负载可以保持运作状态。在返回线路中布设一个电阻器可隔离LTC4366,并允许其随电源向上浮动;因此,输出电压的上限仅取决于高值电阻器的可用性和MOSFET的额定规格。

一个可调的过压定时器能在浪涌期间避免损坏MOSFET,而一个附加的9s定时器则为MOSFET提供了冷却周期。停机引脚负责在停机期间将静态电流减小至14A以下。在 一个故障发生之后,LTC4366-1将锁断,而LTC4366-2则将执行自动重试操作。

LTC4366引脚图

引脚功能:

BASE用于外部PNP并联稳压器的基极驱动器输出。该引脚连接至一个内部6.2V齐纳二极管(其负极接至OUT引脚) 的正极。在期望较低的静态电流但禁止使用一个较大的VSS电阻器时,将一个外部PNP的基极连接至该引脚 (此PNP 的集电极接地,而发射极则连接至 VSS)。不用时 把该引脚连接至 VSS。裸露焊盘:裸露衬垫可以置于开路状态或连接至 VSS

FB过压调节放大器反馈输入。把该引脚连接至一个位于OUT和地之间的外部阻性分压器。过压调节放大器负责控 制外部N沟道MOSFET的栅极,以把FB引脚电压调节在OUT以下1.23V。在发生快速过压的情况下,过压放大器将启动 GATE引脚上的一个200mA下拉电流源。

GATE用于外部N沟道MOSFET的栅极驱动。在启动期间,一个内部7.5 A电流源从VDD引脚对外部N沟道MOSFET的栅极充电。当OUT电压高出VSS 达4.75V时,充电泵将完成GATE的充电(比OUT高12V的电压)。在发生快速过压的情况下,先启动一个位于GATE和OUT之间的200mA下拉电流源,然后由过压调节放大器来调节GATE引脚电压。

O U T 充电泵和过压调节放大器电源电压。用于从MOSFET源极供电的浮动电路之电源输入。当OUT电压高于 4.75V (UVLO2) 时,充电泵将接通并从该引脚吸取功率。当OUT超过2.55V(UVLO1)时,它被用作过压调节放大器的一个电源和基准输入。此引脚被箝位于5.7V并 需要一个0.22 F或更大的电容器以旁路至VSS引脚。

SD停机比较器输入。不用时将此引脚连接至 VDD。把该 引脚连接至一个受限的下拉电流 (此电流通过增设一个 与晶体管漏极开路或集电极开路相串联的电阻器产生)。 启动外部下拉电流源将抽走内部 1.6 A 上拉电流源,可以 使SD引脚电压越过停机门限。该门限被定义为 VDD – 1.5V,且具有一个 280mV 迟滞。为避免误触发,该引脚 必须持续处于上述门限以下达700 s以启动停机状态。停机状态可把总静态电流 (IVDD + IOUT) 减小至20A 以下。 该静态电流不包括 VDD、OUT 和BASE稳压器中的分路电流。在LTC4366发生故障之后,器件置于停机模式并将清除故障和允许恢复工作。在9s的冷却周期中清除故障将可缩短LTC4366-2(自动重试)版本的冷却时间。

TIMER定时器输入。将该引脚置于开路,过压调节时间1s,然后故障关断。在该引脚和VSS之间连接一个电容器,以设定一个用于在开关断开之前进行过压调节时间278ms/F。LTC4366-2版本固化一个9s的冷却周期并后重新起动。

VDD启动电源。用于7.5 A启动电流源(它负责给外部N沟道MOSFET的栅极充电)的电源输入。该引脚还用于为在外部MOSFET关断时处于运行状态的定时器和逻辑电路供电。此引脚被箝位在VSS+12V。不要使用一个电容器对该引脚进行旁路。

VSS器件回线和衬底。TIMER和OUT引脚上的电容器应回接至该引脚。

简化示意图

工作原理

简化示意图描绘了三种操作状态:起动、运行和调节模式。先前的浪涌抑制器件由输入电源供电,因此所能承受 的浪涌电压被限制为器件输入引脚的击穿电压。如运行模 式和调节模式所示,该器件的大部分电路都由输出供电, 于是MOSFET将浪涌与器件的电源引脚隔离开来。这允许用于浪涌电压高至外MOSFET的击穿电压。在起动模式中,一个15A涓流电流流过RIN,其中一半的电流用于给栅极充电,而另一半电流则用作偏置电流。当GATE引脚充电时,外部MOSFET导通从而上拉OUT引脚电压。这将导致器件进入运行模式,此时输出电压之高足以成为充电泵的电源电压。充电泵随后用于对栅极进行充分的充电 (达到高于源极电压达12V)。由于输出电压等于输入电压,因此有必要保护负载免遭输入电源过压的损坏。在调节模式中,使用一个1.23V 基准作为过压调节放大器参考。如果上方反馈电阻器 RFB1两端的电压降超过1.23V,则调节放大器将拉低栅极电压以把 RFB1电压回调至1.23V。因此,输出电压的箝位通过设定RFB1和RFB2之间的适当比值来实现。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top