微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 适用于高频电流模式转换器的斜坡补偿电路的设计与实现

适用于高频电流模式转换器的斜坡补偿电路的设计与实现

时间:03-01 来源:互联网 点击:

PWM DC/DC转换器的设计中,为了防止出现次谐波振荡,需要引入斜坡补偿电路,而传统的斜坡补偿电路通常在加法器处会引入附加的内部反馈环路,这会极大地限制系统带宽。文中提出了一种简单的结构来实现峰值电流模式下的斜坡补偿。这样可以减小斜坡补偿中加法器对系统带宽的限制,从而可以提高系统稳定性,使转换器有更高的开关频率。仿真结果表明,这种方法能实现电压信号准确地相加。

电流模式PWM型DC/DC转换器具有瞬态响应好,输出噪声小,对外同电路干扰小等优点,成为DC/DC的主流。但是,峰值电流模式PWM型DC/DC转换器有一个特有的问题,就是当占空比大于0.5时,会出现亚谐波振荡现象,解决这一问题通常采用斜坡补偿的方法,即在电感电流采样信号上叠加一定斜率的锯齿波信号,如果这一斜坡信号的斜率大于电流采样信号下降斜率与上升斜率差值的一半,亚谐波现象就会消失。传统的斜坡补偿电路是采用运放的负反馈接法实现加法器,这样由于引入了内部负反馈回路,会限制系统的带宽,从而会限制整个转换器的开关频率。

本文提出了一种新颖的斜坡补偿电路,这里利用了电荷守恒定律,存电容两端实现电流采样信号与斜坡信号的相加,这样就减少了一个内部反馈环路,从而减小了对系统带宽的限制,使系统更加稳定,转换器能有更高的开关频率。

1 斜坡补偿

1.1 斜坡补偿的必要性

峰值电流模式PWM开关电源工作在CCM模式下且占空比(D)大于0.5时,系统存在稳定性问题,因为电感电流扰动量经过多个周期后逐级扩大,电感电流波形会出现低于开关频率的包络,电感电流紊乱,峰峰值增大,带负载能力下降,输出电压纹波增加等不良现象,最终导致系统不稳定,整个系统由于扰动无法正常工作。


1.2 斜坡补偿的原理

峰值电流模式PWM开关电源工作在D大于0.5时,内部电流环会不稳定。通常的解决方法是存电流内环加入斜坡补偿电路。如果没有斜坡补偿,系统的稳定性如图1所示。其中实线和虚线分别表示稳定时和受到扰动时电感电流波形,D表示占空比(0<D<1),IE表示由误差放大器设定的电感电流峰值,m1和m2分别表示电感电流上升斜率、下降斜率(m1、m2>0),△I0是初始扰动电流。

可以看到,一个周期后扰动电流变为:




当D小于0.5时,此时m1大于m2,所以经过n个周期后,△In会最终趋近于0。但是当D大于0.5时,此时m1小于m2,所以经过n个周期后,△In会变得越来越大,也就是说初始扰动电流被无限放大,系统变得不稳定。

如果在电流内环中加入一个斜率为-K的(K大于0)的补偿电流(如图2所示),△In可表示为:

由前面分析知道,只要保证即只要要保证,就可以保证系统在任意占空比时都能达到稳定。

2 适用于高频电流模式转换器的斜坡补偿电路的实现

本文设汁的斜坡电路如图3所示,斜坡补偿电路包括电流源I2,电容C2,电阻R2,开关VT2,VT3,VT4和反相器U1,这种简单的结构没有加法器的内部反馈环路,因此极大地避免了带宽上的限制,从而使得转换器的开关频率可以大大提高。

图3中电流源I1和电流源I2是镜像关系,左半部分是锯齿波产生电路,包括电流源I1,电容C1,电阻R1,比较器1,比较器2,逻辑单元和开关VT1.整个电路工作原理如下:逻辑单元产生一个充放电的脉冲来控制开关VT1的开关,从而控制电容的充放电。当开关VT1是关闭时,电流源I1对电容C1充电。此时A点电压线性增加,当A点电压超过UREF1时,此时比较器1会输出一个低电平,使逻辑单元产生一个高脉冲,从而打开开关VT1,使电容通过电阻R1进行放电,因为电阻R1很小,因此放电速度很快,当A点电压下降到小十VREF2时,此时比较器2输出一个低电平到逻辑单元,使逻辑单元产生一个低脉冲,使开关VT1关闭,如此反复,在A点产生一个锯齿波信号。下面可以通过公式推导出此时A点锯齿波的频率,我们假设对电容C1充电电流为ICharge,由电容C1的电荷公式有:

ICharge.t1=C1△U=C1(UREF1-UREF2) (4)

假设通过R1放电的放电时间为t2,这里因为电阻R1很小,所以忽略放电时间t2.

由于电流源I1和电流源I2是镜像关系,所以电流源I2对电容C2充放电会产生一个斜坡信号。如果假设电流源I1和电流源I2是1:1的镜像关系,则此时斜坡频率:

下面我们来分析斜坡补偿电路如何实现加法功能的,SWON端口为功率管的驱动信号,ISEN信号表示采样电流信号,当SWON为低时,表示外部功率管关闭,此时关闭开关VT4,打开关VT3,这时电容C2下端

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top