信号链基础知识#70:模拟正交调制器失衡的数字校正
宽带宽无线发射器常用模拟正交调制器(AQM)把复合(I + j*Q)基带信号转换为射频(RF)。AQM内含一个本机振荡器(LO)输入、一个生成两个LO 90度异相的分相器、两个混频器(每个混频器将基带信号混频为射频)以及一个组合两个信号的加法器(图1)。
图 1 模拟正交调制器系统结构图
就一个完美匹配I和Q通路的理想AQM而言,基带信号的wBB频率复频为:
根据基带Q的不同符号,得到wBB - wRF或者wBB + wRF RF输出的单频
但是,实际状况不见得理想,有三种可能出现的误差:
基带DC偏差 I和Q分支之间的增益错配 LO相位误差图2数学方法表示。
图 2 有偏差、增益及相位误差的AQM的数学表示
DC 偏移会与 LO 混频,产生 LO 馈通,即wLO的频率。I和Q分支的DC偏移加入正交,形成以下的LO馈通振幅:
通过在基带信号中添加一个反向偏差,可对LO馈通进行校正。许多双高速DAC或集成发射器解决方案,例如:TI的AFE7071等,都包括生成校正用基带偏差的数字电路。找到I和Q基带信号最佳DC偏差值的一种简单方法是,监测LO馈通振幅,并反复地改变首个I DC偏差,然后再改变Q DC偏差,最终找到最小LO馈通(图3)。在pass 1期间,Q DC偏差保持不变,而对I DC偏差进行扫描,直到找到最小LO馈通为止。在pass 2期间,I DC偏差值维持在最低限度,而对Q DC偏差进行扫描,直到找到最小LO馈通为止。在理想情况下,每个I和Q仅需要一个pass,但首批2个pass期间LO馈通最小值所产生的测量误差,通常亦意味需要3个或者4个pass。
图 3 本机振荡器馈通校正过程
增益和相位误差会导致无用混频器抵销不完全的结果-剩余量称作边带抑制(SBS)。上下边带振幅以基带Q输入的增益误差G和I分支混频器LO的相位误差(弧度)作为开始,其为:
在这种情况下,低边带主导,而边带抑制为一个比率:
或者也可以用dBc表示:
图4显示dBc和相位及振幅误差表示边带抑制的比较情况。
图 4 边带抑制(dBc)对比相位及振幅误差
使用上述类似方法求解LO馈通时,通过改变基带信号的增益和相位来抵消AQM的增益和相位误差,可以校正边带抑制(SBS)。如TI的DAC34SH84等高速插值数模转换器(DAC),包含了一些生成DC偏差、基带信号增益和相位变化的数字电路,从而可以轻松修正AQM的缺陷。
尽管LO馈通和SBS均可在任何状态下获得完美的校正,但最佳校正值会随电源电压、温度、RF和基带频率、LO功率等而变化。通常,仅在制造期间进行一次校正,之后,在系统起动时,再对这些值进行存储和编程。在一次性校正以后,LO馈通和SBS的温度、电压和LO功率差异通常会在AQM数据表曲线图中标明(参见TI TRF3705数据表图33-44)。LO馈通和SBS通常会好于–50 dBc(比未校正值好10-15 dB)。
下次,我们将讨论电源噪声对时钟器件的影响,敬请期待。
..............................................
与非深度解读系列:
半导体公司"大学计划"的追问和真相
大环境的不景气是就业环境恶化的元凶,但是也让我们不禁追问半导体公司的大学计划对于学子们的真正意义。厂商们的大学计划都在做些什么?那么多的联合实验室有得到充分利用吗?大学计划的直接体验者--老师和学生们是否真正从中受益…….【专栏作者:高扬】
本土IC公司调查笔记
全球经济不景气的大环境下一些本土IC公司的创新能力、管理能力、抗风险能力、盈利能力,甚至公司创立的动机都受到一些质疑。一方面官方的消息总是告诉我们中国的半导体产业得到了长足的进步;而街巷小道中又不绝流传多少本土IC公司倒闭,多少公司靠欺骗,根本没有核心竞争力….真相只有一个,也许会随《本土IC公司调查笔记》慢慢开启…【专栏作者:岳浩】
电子屌丝的技术人生系列
在这个系列里,每个故事都会向你展示一个普通工程师的经历,他们的青葱岁月和技术年华,和我们每个人的的生活都有交集。对自己、对公司、对产业、对现在、对未来、对技术、对市场、对产品、对管理的看法,以及他们的经历或正在经历的事情,我们可以看到自己的影子,也看清未来的样子……【专栏作者:任亚运】
细说电子分销江湖的那些事
对于从事电子分销行业的同仁们来说这是一个最坏的年代,也是一个最好的年代,我们即面临国际分销巨头在管理、资金、货源等方面对我们造成的冲击,又迎来本土集成电路的崛起,个性化服务盛行的机遇,通过这个系列,我想以"第一现场"的经历带大家一起了解国内集成电路分销的那些年、那些事,以及哪些感慨…..【专栏作者:张立恒】
TRF3705 AQM DAC 德州仪器 信号链基础知识 相关文章:
- 德州仪器高性能模拟运放产品系列介绍集锦(11-13)
- 如何使低功耗放大器在便携式产品中提高性能(10-03)
- 一种折叠共源共栅运算放大器的设计(11-20)
- 高速DAC AD9712B/AD9713B的原理和应用(11-30)
- 混频器用作开关,可使 DAC 采样频率加倍(01-22)
- 什么是DAC(数模转换器)(01-24)