微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 交错技术显著提高升压转换效率

交错技术显著提高升压转换效率

时间:01-09 来源:3721RD 点击:

图5中,综合电流或总电流的均方根值是5Arm,因此设计只需采用一半输出电容,即可让纹波电压达到与单相设计相同的纹波电压。

图6是不同占空比下的纹波电流消除。垂直线表示工作占空比,从中可以看出在此占空比下,交错式升压设计的RMS电流等于单相位设计的一半。值得注意的是,50%的占空比可以提供完全消除的效果。

图7与图8说明单相与交错式升压转换器的完整设计。在单相设计中,在电压模式下工作的UCC38C43驱动一对MOSFET.由于在升压转换器短路情况下无法限制输出电流,因此采用了带有过电流保护电路的TPS2490热插拔器件。在测试过程中发现,在过电流故障情况下它可以提供一种"中止"电流流动的方法。

图8说明采用UCC38220控制器的交错式设计。利用Q5与Q7漏极引线中的小型低成本电流互感器感测FET电流。UCC28220迫使相位之间实现相等的电流共享。降低整流器的电流可以消除对散热片的需求并且降低组装成本。

试验结果

这两种设计在效率、输入与输出纹波电压以及瞬态负载方面的对比结果显示,在大部分情况下,双相设计的性能都优于单相设计。

图9对比两种方法的效率。它们都能够满足91%的目标效率。不过,双相设计在满负载情况下的效率高两个百分点。虽然这看起来可能并不明显,但是若比较两种电源的损耗差异,就会发现其中差别很大。单相设计消耗23 W,而双相设计仅消耗16 W.这相当于热损耗降低30%,因而必将对散热片的选择与热功耗设计产生一定影响。

单相曲线很快达到最高值,然后开始迅速下降。这是传导损耗较高的设计的特性。两种设计的明显差异体现在电感、升压二极管、输出电容与PWB的损耗。表2对比了电感需求与设计性能。如前所述,双相方法采用的电感比单相设计低得多,而且每个电感仅承载一半的电流。电感的体积取决于蓄能需求与温度的升幅。蓄能大小由(1/2×L×I2)决定,而表2说明单相设计的蓄能是双相设计的5倍。这意味着,如果我们要使电感的温度升幅保持相同,则单相设计的电感应当大5倍。我们认为与其保持相等的能量密度,不如允许较大的温度升幅。我们在单相设计中使用损耗较大的电感因而牺牲了部分效率。结果,单相设计的损耗高出了近5 W.在这两种设计的功耗差异中,输出电容大约占1 W.每个输出电容的纹波电流造成大约100 mW的损耗,而且单相设计需要的电容比双相设计多出6个。双相设计的功率级必须采用两个二极管,每个二极管承担总电流的一半。这样它们具有较低的压降,可使总功耗降低大约1W.

小结

与降压稳压器一样,交错式升压设计的性能也优于单相设计。从表3中完整的单相升压设计与交错式升压设计的对比即可看出。交错式升压设计体积更小,效率更高。这是因为它能减少输出纹波电流,使得输出电容数量显著降低,从而降低了成本与功耗;它还能减少电感的蓄能要求,这表示电感磁线圈的体积、高度与热损耗都会降低。多相方法可使总功耗降低 30%,同时将热量分散至较大电路板面积,从而实现更完美的热管理。多相设计必须测量与平衡每个相位的电流大小,因此它确实会增加电路的复杂性,这从可控制组件的数量就能看出。


Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top