教您利用4-20mA电流环路系统中产生的废能
4-20mA电流环路信号常用于工业环境,实现远距测量数据传输,例如:加工温度或者容器压力等。这种信号传输方式之所以成为人们的首选,因为它简单便捷、抗噪、安全,并且可以在没有数据损坏的情况下实现远距离传输。由于传输数据的电流相对较低,这些电流环路还是低功耗系统。以前,没有获得利用的功率,或者信号传输过程中损失的功率,都在发送器内耗散掉;但现在,利用现代集成电路以后,即使这一小部分功率也被节省下来,以支持系统中必需功能的正常工作。
4-20mA电流环路系统基础知识
图1显示了一个典型的4-20mA电流环路系统。一个半稳压式24V DC电源同时向电流环路和发送器组件供电。发送器对重要信号(例如:温度、压力和其他参数)进行测量,然后输出一个2-20mA电流,其与该信号强弱成比例。该电流通过线路,传输至某个接收机系统。之后,电流遇到电阻器形成电压,其通过一个模数转换器(ADC)读出,然后再经过进一步处理。通过连线,连接回到为环路供电的电压源,这样构成一个完整的环路。
图1:基本的4-20mA电流环路系统
工业应用中使用这些电流环路具有诸多好处:
●电流环路是一些简单电路,仅要求一个简易电源、一个完成测量然后产生电流的发送器、一条传输线以及一个接收机电路。电源只需提供足以克服各种系统压降问题的电压;多余的环路电压刚好在发送器处得到降低。由于电流较低,仅有少量功耗,因此发热较少。
●电流环路仅包含一个电流环路。因此,根据基尔霍夫电流定律,通过环路中所有组件的电流相等。这样便实现了较高的抗噪性,而抗噪性又是工业环境应用的关键。
●由于信号电平最低达到4mA,从而实现了安全性。如果环路内部出现损坏,或者环路连接断开,则接收机无法读出电流,其表明出现故障,而非最低信号电平。
●只要电源电压高到足以克服系统压降,则代表测得信号的理想电流由发送器维持。因此,高压降和低成本的小规格线材用于进行互连,其仅要求增加电源电压。最为重要的是,线路允许相对较大的压降,便可以使用大量的连线。这样,受测仪器和对测量数据进行处理的控制室之间便可实现物理隔离,从而为控制室内的人员提供安全保护。
基本系统改进
我们可以利用多余的环路电压,用于向接收机电路供电,否则其会在发送器被降下来。图2显示了一个在电流环路中插入的电源。该电源与其供电的接收机电路一起放置于控制室中--有效地将多余环路电压转换为有用输出功率。
图2:4-20mA电流环路中多余环路电压的利用
由于接收机电阻不再接地参考,因此可能会需要电平移动电路,以连接数据转换器输入。任何高端分流监测器(例如:TI INA138等)都可提供这种极为简单的电路。这些器件对共模电压的小检测电阻压降进行测量,从而降低接收机电阻的必要压降。这样便让更多的电压可以为电源所利用,从而降低能源浪费。
这种电源通常会提供经过稳压的3.3V输出,以为电平位移器、数据转换器以及控制室内的所有其他低功耗设备供电。例如,来自TI MSP430TM平台的微处理器,其对接收数据进行检查,然后做出决策;来自TI CC430系列的低功耗RF器件,其将数据无线传输至其他地方。如果无需为特别长的电流环路购买和安接线路,从而实现成本节省,则无线发送器特别有用。这些器件的功耗必须非常低,因为榨取自电流环路的多余能源数量有限。
最后,这种电源还必须能与此类低功耗电源一起工作-最小电流4mA,最大电流20mA。由于这种电流所产生的电压为环路的多余电压,因此电源必须接受一个宽输入电压范围,并且仍然提供稳定的输出。对这种电源而言,更困难的是通过限流电源来启动系统。一般而言,启动期间要求更高的输出功率,对输出电容器充电,同时为负载提供启动电流。它远高于正常运行时系统消耗的量。如果电源要在启动期间提供这种高功率,则其输出功率会超出电流环路提供的量。如果出现这种情况,进入电源的电压会在电源关闭以前不断下降。这样,在重新开启以前,其输入电压会再次上升,并不断重复该过程。当电源通过这种小输入功率工作时,启动振荡是我们需要克服的一个难题。
能源利用解决方案
正如前面所述,废能利用型电源必须拥有较宽的输入电压范围,能够通过非常小的输入功率工作,并能在通过限流电源供电时避免出现启动振荡。TI的TPS62125便是一个这种电源,因为它通过一个3-17V输入工作,仅要求11μA的工作电流,并且拥有带可调磁滞的可编程使能阈值电压。TPS62125产品说明书中建议的电路有三个小改动:
1、给器件输入添加一个
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...