微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 有源钳位拓扑结构关断重置开关的正向转换器

有源钳位拓扑结构关断重置开关的正向转换器

时间:07-20 来源:互联网 点击:

有源钳位拓扑是众多流行拓扑结构中的一种,因为其允许在一个电子子系统中高效地将总线电压转换为逻辑 IC 上所需的电压。一篇回顾有源钳位拓扑关断重置开关的文章已经刊发[1]。这篇文章完整地介绍了开关周期。此外,该文章还描述了主开关从"开"到"关"的转换,以及"有源钳位"开关开启点电路的电压和电流。这种对于有源钳位开关的描述,主要针对有源钳位正向转换器输出电感中存在连续电流的情况。文中提及的变压器为一种理论模型,其描述了漏极电感 LL、磁化电感 Lm 以及耦合绕组 Np 和 Ns 等独立元件。该介绍以周期的功率分配中点开始,并将图 1 所示电路作为讨论的根据。箭头表示正电流。由于其本身固有的主体二极管和漏-源电容,图中还显示了开关 Q1(有源钳位开关)和 Q2。我们之所以还能够看到 Q3 和 Q4 栅-漏电容,是由于它们会影响电流。

图 1 拓扑、电压和电流为了简化示波器波形,将主次接地参考连接在一起以形成一个公共接地。初始条件为:Q2 开启,流经 Q2 (Iq2) 的电流等于来自 Vin (IIN) 的电流。Q3 开启,并将电流导过次级绕组 Iout。Q1 和 Q4 都关闭。Q1 的漏极具有约负 2 Vin 偏置电压,同时 Q4 漏极的电压为 Vin*(Ns/Np)。电流 Iin 流经变压器的主绕组、引脚 1 和 引脚 2,从而首先流经漏极电感 LL,之后分流为 Im 和 Ip。Im 为流经 Lm 的磁化电流,而 Ip 为通过主绕组 Np 与次级耦合的电流。随后,Im 和 Ip 电流重新会合,在引脚 2 从变压器流出,最后流过开关 Q2。电流 Is 等于在引脚 4 从变压器次级绕组流出的电流 Ip*(Np/Ns),其反映了流经 Np的电流 Ip。结果是这两种电流在磁芯中磁通相抵。另一方面,磁化电流是由一次侧磁化电感两端的输入电压引起的。该电流以 Vin/Lm 比率不断增加。在引脚 4 上,变压器的二次侧电压高于输出电压。二者之间的差会导致 Q2 开启期间流经输出电感的电流不断增加。同时,该电流还以 (((Vin*(Ns/Np)) – Vout)/Lout 比率不断增加。当反射至一次侧时,这种变化的电流会比 Im 具有更高的变动率。因此,它通常是计算控制环路时唯一要考虑的电流斜坡。测试部件的变压器拥有 6:1 的匝数比,因此您在查看波形时必须将其考虑在内。由于变压器引脚 3 和引脚 4 两端存在电压,Q3 在 Q3 米勒电容栅极侧被偏置,同时 Cgdq3 被偏置为高电平。由于转换开始 Q1 关闭,因此在该 P 通道 FET 漏极上存在一个负电压。假设占空比为 50%, Cr 两端的电压则约为 Vin 的 2 倍,同时 Q1 漏极(即 P 通道 FET)上的电压为低于接地电压 2*Vin。由于相比 LL,Lout 和 Lm 均相对较大,并且这种情况下我们所说的是约 120 纳秒的时帧,因此我们可以假设 Iout(流经 Lout 电流)和 Im(流经磁化电感的电流)始终保持恒定。我们将要描述的事件顺序共有 5 个不同的阶段。每个阶段的开始和结尾均在如图 2-3 所示屏幕截图中标示出来,其分别为 t1、t2、t3、t4 和 t5。从 t1 开始,该控制电路关闭 Q2。这是一个非常快速的转换。由于 Q2 和 Q1 的极大漏-源电容,其为一个从 Q2 的低阻抗到高阻抗的零电压转换。从变压器引脚 2 流出的电流现在正对 Q2 的固有漏-源电容充电,并经过重置电容 Cr 流入 Q1,从而导致变压器引脚 2 的电压线性上升,以及 Q1 漏极电压的相应上升。现在,我们需要来研究一下相对电压。

图 2 变压器引脚 2 和引脚 4 上的电压

图 3 变压器引脚 2 和引脚 3 上的电压引脚 2 上的电压增加(也即时间t1的电压),反映在整个变压器绕组中。这就导致引脚 4 上电压的下降。由于 Np 和 Ns 绕组的电压必须保持平衡,所以在 Q4 的漏-源电容以及 Q3 和 Q4 的栅-漏电容均存在电压变化。Lout 中的电流不会有较大的变化,因此从这三个电容流出的电流必然是 Is 和 Ip 变化的结果。Ip 中电流的微小变化导致主次级电容电压以一种平稳的速率变化。这时,当 Q3 即将关闭时,输出电感便能够通过 FET 自身下拉所有其需要的电流(栅极电阻延迟了 FET 关闭)。Q4 的主体二极管被反向偏置。在这部分转换期间,引脚 2 的电压仍然低于 Vin,因此主电流即流入变压器的 Iin 没有理由下降。输出电感两端的电压随引脚 4 的电压下降而变化,以反映主绕组电压的逐渐下降。由于变压器引脚 4 的电压不断下降,因此输出电感两端的电压会发生变化。现在,输出电压 Vout 超出了变压器引脚 4 的电压。这些因素以一个固定比率不断变化,因为 Iin 不断线性地对 Q1 和 Q2 的漏-源电容充电,直到出现时间 t2,也即引脚 2 电

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top