基于LLC的大功率智能充电器设计方案
关管(Q1 、Q2 ) 都截止,Q1 的反向二级管导通续流, Lr 上的电流逐渐减小,变压器产生感生电流,向负载供电。 反向二极管的导通将Q1两端的电压钳位在零。
模式2 (t1 - t2):Lr 上的电流在t1 时刻减小到零,Q1 在此时刻导通, Lr 上的电流反向增大, 达到峰值后减小。 Lm 上的电流先减小,然后反向增加。
可以看出,t1 时刻由于Q1 的反向二极管的钳位作用,Q1 的导通电压为零。 此阶段只有Lr 和Cr 进行谐振。
图4 工作时序波形图
模式3 (t2 - t3):Lm 上的电流在t2 时刻与Lr上的电流相等,此时流过变压器的电流为零,负载与变压器被隔离开。Q1 在此时刻关断,Q2的反向二极管导通续流。 此阶段Lm 也加入到谐振部分, 与Lr 和Cr 串联组成谐振回路。
在下半个周期中, 电路的工作与上半个周期刚刚相似,只是方向相反。整个周期的电路工作波形:在上半个周期中,开关管Q1 为零电压导通, 而Q1 在t3 时刻的关断电流im 很小; 在下半个周期中,开关管Q2 为零电压导通,而Q2 在t6 时刻的关断电流im 很小,所以Q1 、Q2 工作时的开关损耗很小。
2 充电器硬件设计
经过上面的分析,设计中采用电流、电压负反馈的方法来达到恒流、恒压充电的目的,充电器硬件原理框图如图5 所示。
图5 充电器的硬件原理框图
交流电经过滤波整流后,流向NCP1653,由其提供PFC(Power Factor Correction) 操作,NCP1653是一款连续导通型(CCM) 的功率因数校正( PFC) 升压式的上升控制电路, 它的外围元器件数量很少,有效地减少了升压电感的体积, 减小了功率MOS管的电流应力,从而降低了成本,且极大地简化了CCM 型的PFC 的操作,它还集成了高可靠的保护功能。 NCP1396 电路为整个硬件电路提供保护(包括有反馈环路失效侦测、快速与低速事件输入,以及可以避免在低输入电压下工作的电源电压过低侦测等) ,NCP1396 的独特架构包括一个500 kHz 的压控振荡器,由于在谐振电路结构中避开谐振尖峰相当重要,因此为了将转换器安排在正确的工作区,NCP1396 内置了可调整且精确的最低开关频率,通过专有高电压技术支持。 应用S3F84K4 单片机实现智能充电器控制。
3 软件设计
为满足充电要求, 该充电器软件设计除了完成充放电控制外, 还具有过流保护、过压保护、过温保护、短路报警等功能模块。主程序流程图如图6 所示。
图6 主程序流程图。
程序开始执行后, 首先进行初始化并检测电池电压、电流、温度等信息是否正常。 如正常则进入下一步。 否则报警并关闭电路。 如果电池电压在充电终止电压和放电终止电压之间, 说明电池既可充电也可放电。 此时电路将判断接上充电机还是接上负载。 以进行相应的充电和放电。 如果两者都没有接则循环检测过程。 若电池电压已经到达充电终止电压。 则等待负载的接入进行放电;同样若电池电压己经达到放电终止电压,则等待充电器的接入以进行充电。 在整个过程中,该电路将始终实时检测电池信息,若有异常情况发生,则立即利用中断信号终止正在进行的充电或者放电过程,关断充放电回路,同时进行报警并提示报警原因。
4 测试结果
本充电器的各项指标如下:
(1) 输入电流:50/ 60 Hz。
(2) AC/ DC 输出电压48 :V , AC/ DC 输出电流:5. 0 A。
(3) 恒流充电电流:4. 5 A。
(4) 恒压充电电压:45 V (AC)。
(5) 环境温度: - 5~45 ℃。
经分析, 按上述设计和分析结果, 最后选定LLC 的参数Cr = 0. 043 055μF,Lr = 72. 636 09μH,Lm = 435. 816 5μH。
本智能充电器经测试,充电保护措施可靠,充电状态准确,充电时间约为6 h ,如果需要进一步缩短充电时间,只需在初始化时设定更大的充电电流即可。 因为采用PWM 控制器,所以,充电效率可以达到92 %以上,最低时在85 %左右。根据实际需要,要想达到理想的充电效率,对充器件做进一步的精确要求。
5 结 语
在智能充电器控制系统设计过程中,主要侧重点是保证充电器对充电电池电压的精确控制,设计中元器件的选型也都是围绕着这个重点来完成的经过实验电路的实际测试,由电源变压器、整流电路、滤波电路及稳压电路构成AC/ DC 变换电路。 在NCP1653 、NCP1396 与S3F84 K4 的配合控制下可实现很高的系统精度。
- 基于PIC单片机的数字式智能铅酸电池充电器的设计 (01-02)
- 基于UCC3895与PIC单片机的智能充电器的设计(04-17)
- 基于AVR的锂电池智能充电器的设计与实现(03-09)
- 基于XC164CM的新型快速无损智能充电器设计(09-08)
- 基于PIC18F的智能充电器的设计与实现(05-21)
- 1开关型铅酸蓄电池智能充电器方案(07-16)