两种高功率因数开关电源设计方案的比较
采用Matlab7.6对所设计的单相全桥电压型PWM 整流器进行建模和仿真,在Simulink中搭建仿真模型,主电路仿真参数:峰值电压为311V,频率为50Hz,相位为0°,采样时间为0s;Ls=2mH,Rs=0.5Ω,直流侧滤波电容Cd=2 500μF,直流侧负载电阻RL=50Ω;从PowerElectronics中调用Universal Bridge 模块,并将其设置成二桥臂IGBT/Diodes模式,仿真算法设置为可变步长类算法中的ode45算法。
交流输入侧电压与电流的仿真波形如图6所示,可见交流侧电流、电压能始终保持同相,且电流能实现正弦化。直流侧输出电压波形如图7所示,可见0.06s后输出电压稳定在400V左右。
在Powergui模块中对电路进行FFT分析,在Available Signals中进行相关设置后对输入侧电流进行谐波分析,结果如图8所示。由图8可知,总谐波畸变率DTH=0.77%,实现了系统低谐波畸变率的目标,电流谐波得到了很好的抑制。
图8 输入侧电流谐波分析结果
PWM 整流器功率因数波形如图9所示。由图9可知,电路功率因数始终大于0.985,且工作0.03s后功率因数能达到1.
图9 整流器因数波形
4.2 单相APFC电路仿真与分析
单相APFC电路采用Matlab7.6进行建模与仿真。图10为APFC电路输入电压和电流波形,可见网侧输入电流由窄脉冲波形变成正弦电流波形,且与输入电压同相位。图11为APFC电路输出电压波形,可见经过60ms的软启动过程之后,输出电压稳定在400V左右,满足设计要求。图12为APFC电路输入电流谐波分析结果,可见除基波外,其余谐波含量均很小。
由图12可知,输入电流DHD为0.256 5.功率因数计算公式为PF=γcosφ,其中r 为基波因子。
由于输入电流与电压基本同相位,即相位差φ 为0,则:
5 结语
采用功率因数校正技术和PWM 整流技术设计了两种高功率因数的开关电源,采用Matlab7.6建立仿真模型。由仿真结果可知,采用DSP 芯片TMS320LF2407设计的前级单相全桥电压型PWM整流电路功率因数大于0.985,并在电路稳定后达到1,大于APFC电路的功率因数0.969;且电压型PWM 整流电路电流总谐波畸变率为0.77%,远小于APFC电路的总电流谐波畸变率25.65%.两者相比,单相全桥电压型PWM 整流器能更好地实现输入侧电流的正弦化和与输入侧电压的同相位,能更彻底地解决传统开关电源电流谐波大、功率因数低的问题,更好地实现绿色电能转换的目标。但是电压型PWM 整流器成本较高,在实际应用中应根据具体需求选择适合的类型。
电源设计必杀技:TI公司最系统的电源设计培训资料
- 什么是高功率放大器(01-24)
- 兼容标准的高功率PoE系统设计(11-19)
- 高功率LED照明设计师应清楚的5大概念(04-23)
- 基于SVPWM的航空高功率因数整流器设计(08-15)
- 高功率因数低空载损耗AC/DC电源的研究(02-06)
- 便携式电源产品中的电池充电器发展趋势━━高功率和宽范围输入(07-06)