微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 通过实验室测试探索平衡的好处

通过实验室测试探索平衡的好处

时间:10-21 来源:互联网 点击:

。内部电阻增加使电池更快地达到充电结束门限。尽管在工作时没有平衡,这个电池组在 100 个周期中自始至终保持着同样程度的不平衡。能像这个电池组一样,每节电池自然而然相互匹配的电池组相当罕见。


图 3:充电周期之后电池组 1 中电池的电压

测试结果:电池组 2

第二个电池组评估时采用了无源平衡算法。在进行任何平衡之前,电池组经过 10 次充电 / 放电。电池组 2 的初始电压如图 4 所示。与电池组 1 不同 ,制造商没有对这些电池的 SOC 进行很好的匹配。遇到这种类型失配的可能性要大得多。电池组 2 需要平衡,然后才能提供总的潜在容量。这种情况是更加典型的。


图 4:充电周期之后电池组 1 中电池的电压

5 号电池与其余电池之间存在很大和高于 100mV 的不平衡。这种不平衡对电池的容量有极大的影响。在一个完整的周期之后,该电池组显示所测得的容量为 1.765AHr。经过 10 个周期之后,不平衡依然存在,平衡算法启动。平衡器给所有电池放电,以与 5 号电池匹配,经过一个完整的充电周期之后,所记录的 SOC 为 2.043AHr,与初始 SOC 相比有 16% 的改进。平衡算法依然保持运行,但是在接下来的 50 个周期中,校正作用非常小,50 个周期之后,所测得的容量为 2.044AHr。

即使经过大量平衡周期之后,该电池组仍然没有利用全部可能使用的能量。主要限制是,该平衡算法没有考虑电池内部电阻这个因素。1 号电池有较高的内部电阻,总是在 5 号电池之前完成充电,从而使 5 号电池无法完全充电。在 50 个周期后,对平衡算法进行修改,以观察电池组容量是否能得到改善。平衡算法修改为,让放电电阻器跨电池两端连接,同时如果任何电池的电压高于 Clow,就连接充电器。这允许比较薄弱的电池在充电器断接之前获得更多电荷,也是图 2 中提到的导引充电电流方法的一个例子。这种充电策略的改变使可用容量提高到了 2.051AHr,并改善了平衡时间。该电池组再充电和放电 50 次,即总共 100 个周期,那么 100 个周期之后所测得的容量为 2.054AHr。电池组 2 的容量在测试过程中一直保持恒定,且当平衡策略改善后,容量提高了。即使最初某节电池与其他电池严重失配,这种改进依然可以实现。

结论

如果电池组物理上很小,电池节数很少,那么初始查验步骤就能保证在电池的寿命期内使电池保持很好的匹配状态。在小型电池组中,电池的负载和温度条件一般是很好匹配的。测试显示,少量不平衡将随着充电 / 放电周期数的增加而增大,电池组 1 损失了 1.4% 的容量。第二个电池组从一开始就显示需要平衡硬件,如果没有平衡硬件,电池组的效用就完全由电池制造商决定了,而且对电池组的误差根本无法校正。在有平衡系统的情况下,电池组 2 能够在测试中自始至终保持其容量,而电池组 1 的容量则稳步下降。总之,在整个工作寿命期内,平衡系统有助于扩大电池组容量。对平衡算法的改进可能包括使用电池特征数据以及特定电池的建模。这允许控制器更准确地确定电池组中各节电池的能量水平,从而甚至当使用相同的平衡电流时,也能使控制器更准确地平衡电池,并缩短平衡时间。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top