多相交叉升压电路及其在有源功率因数校正技术中的应用
、电感L2、二极管VD2组成。图5为推挽式升压电路的各点波形图。交流输入u经全波整流后的电压ud加到推挽式升压电路的输入端。由有源功率因数校正控制驱动电路提供的两组相位相差180°的驱动信号ugs1和ugs2分别驱动功率开关器件S1、S2,使两路交叉导通。从图5中可看出,与通常单端式升压电路不同,推挽式升压电路的输出电压是由两个完全相同的波形相移180°叠加而成。其输出功率可扩展为单端式升压电路的2倍。
(a)交流输入u
(b)全波整流后的电压ud
(c)功率开关器件S1的驱动信号ugs1
(d)功率开关器件S2的驱动信号ugs2
(e)功率开关器件S1上的电压uds1
(f)功率开关器件S2上的电压uds2
(g)输出电压uc(电容上的电压)
图5 推挽式升压电路的各点波形图
图3所示的双路并联推挽式升压电路由图2所示的两组推挽式升压有源功率因数校正电路直接并联组成。由两组相位相差180°的驱动信号ugs1和ugs2分别去驱动双路并联的推挽式升压电路中功率开关器件S1、S3和S2、S4,使双路并联推挽式升压电路中功率开关器件S1和S3分别与S2和S4交叉导通。双路并联推挽式升压电路的各点波形与推挽式升压电路的基本相同。其输出功率可扩展为单端式升压电路的4倍。
图4所示的三相有源功率因数校正电路拓扑中每一相所对应的推挽式升压电路的工作原理及相应各点的波形与单相推挽式升压电路的相同。
双端推挽式升压有源功率因数校正控制及驱动电路原理图如图6所示,由推挽式升压主电路和有源功率因数校正控制驱动电路组成。图中虚线框内为推挽式升压有源功率因数校正的专用控制电路,该电路由有源功率因数校正专用集成电路,分频器及驱动器组成。功率因数校正控制电路可采用任意一种有源功率因数校正专用集成电路,例如UC3854、MC34261、ML4812、TDA4814、CS3810等[3],[8]。由有源功率因数校正专用集成电路输出的脉宽调制信号经分频器给出两组相位相差180°的脉冲信号,使驱动器提供两组相位相差180°的驱动信号ugs1和ugs2分别驱动功率开关器件S1、S2,使两路开关即两路升压电路交叉导通。
图6 双端推挽式升压有源功率因数校正控制及驱动电路原理图
4 主电路实验结果的分析
实验采用最简单,最基本的多相交叉式升压电路--双端推挽升压式的电路。实验条件如下:
主电路功率开关器件采用IR的功率MOSFETIRFP460,耐压500V,最大电流20A。对应输出功率1kW,由2个主功率开关器件交叉组成。2个电感分别为1mH,采用材料为R2KB的EE40磁芯,电感中流过的电流为4A。对应输出功率2kW的电路,2个主功率开关器件分别由4个IRFP460并联组成,2个电感分别为0.5mH,采用材料为R2KB的EE55磁芯,电感中流过的电流为8A。对应输出功率4kW的电路,2个主功率开关器件分别由8个IRFP460并联组成,2个电感分别为0.25mH,采用材料为R2KB的EE65B磁芯,电感中流过的电流为16A。每路的开关频率为fs=100kHz。
推挽升压式电路的控制及驱动由PWM专用集成电路SG3525的两路输出经射随功放器来完成。图7为双端推挽升压式控制及驱动实验电路图。
图7 双端推挽升压式控制及驱动实验电路图
5 结语
双端推挽升压式电路的实验结果表明本电路适用于2~4kW电力电子产品的有源功率因数校正。具有成本低,控制电路简单的优点。同时减少了输出直流电压的脉动。是一种实用性很强的基本电路拓扑。
- 能使螺线管可靠工作的升压电路(01-08)
- 一种长寿高效Boost超级电容掉电保持后备电源(03-12)
- 热插拔控制器在直流升压电路中的设计应用(02-13)
- 简单的升压电路(08-19)
- 通用和低噪声的有源滤波器提供达10MHz的可重复性能(01-05)
- 采用电流差分跨导放大器的电流限幅器及其应用(02-21)