微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 运算放大器:驱动PIN二极管替代方案

运算放大器:驱动PIN二极管替代方案

时间:11-12 来源:中电网 点击:

就是这样一种器件,它具有出色的特性,片上集成电荷泵,输出摆幅可以达到地电压以下3~1.8V(具体取决于电源电压和负载)。该器件鲁棒性很好,可以真正为其他电路提供最高50mA的负电源电流。

ADA4858-3为单电源系统中的互补PIN二极管微波开关驱动问题提供了一种独特的解决方案。回顾图4,从中可以看出:即使很少量的反向偏置也有助于降低二极管电容CT,具体取决于PIN二极管的类型。此类驱动器对GaAs PIN二极管很有利,因为这种二极管通常不需要很大的负偏置就能使关断电容(CT)保持较小的值(见图9)。

图9 GaAs CT电容与电压的关系

图10所示电路用ADA4858-3作为PIN二极管驱动器。可以在输入端增加一个缓冲门,使该电路兼容TTL或其他逻辑。对此电路的要求是将TTL 0V至3.5V输入信号摆幅转换为互补–1.5~+3.5V摆幅,用于驱动PIN二极管。

图10 ADA4858-3用作PIN二极管驱动器

R1、R2、R3和U1C形成该电路的–1.5V基准电压,内部负电压CPO由片内电荷泵产生。电容C3和C4是电荷泵工作所必需的。负基准电压随后通过分压器(R5和R9)与VTTL输入以无源方式合并,所产生的电压(VRD)出现在U1B的同相输入端。U1B输出电压可以利用公式8计算。

(8)

其中:

(9)

负基准电压也被馈送至放大器U1A,在其中与TTL输入合并,所得输出电压V2可以利用公式10计算。

(10)

这些放大器采用电流反馈架构,因此必须注意反馈电阻的选择,反馈电阻对于放大器的稳定性和频率响应有着重要作用。对于本应用,反馈电阻设为294Ω,这是数据手册所推选的值。输出电压V1和V2分别可以用公式8和公式10表示。输出尖峰电流量可以利用公式3和电容C5、C6上的电压确定。设置PIN二极管导通电阻的稳态电流由R11与R12上的电压差确定,并取决于PIN二极管曲线和系统要求。

对于本应用,RF开关负载为MASW210B-1硅PIN二极管单刀双掷(SPDT)开关,用于微波下变频器的前端(见图11)。

图11 下变频器功能框图

开关输出波形和TTL输入信号如图12所示。请注意,上升沿和下降沿非常陡峭。由于开关的开关时间要求相对较慢(约为50ns),因此本应用没有使用尖峰电容C5和C6。设置稳态二极管电流的电阻R11和R12均为330Ω。

图12 显示RF开关速度的波形

图13显示了下变频器前端的频谱响应;开关SW1位于固定位置,以消除插入损耗。请注意,图中不存在谐波或边带,充分表明没有明显的100 kHz开关伪像从ADA4858-3片内电荷泵散出,这是在此类应用中使用这些器件的重要考虑因素。

图13 下变频器的频谱响应

结论

以上三例说明,运算放大器可以创造性地用作传统放大器的替代方案,其性能与PIN二极管专用驱动IC相当。此外,运算放大器可以提供增益调整和输入控制功能,而且当使用内置电荷泵的运算放大器时,无须负电源,这就提高了PIN二极管的驱动器和其他电路的设计灵活性。运算放大器易于使用和配置,可以相对轻松地解决复杂问题。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top