物联网RFID智能交通拥堵判别算法的研究与实现
km/h以下时被视为严重拥挤。还有文献介绍车辆在信号灯控制的交叉路口,3次绿灯显示未通过路口的状态定义为拥堵路口。根据上述规定,并结合扬州城市道路的规模,在如图3所示的城市道路网中两相邻交叉口之间的路段上距离交叉口150 m的地方安装RFID阅读器,每个阅读器附带天线可以覆盖整个车道的宽度范围。一旦路口发生交通拥挤事件,则阅读器A处的流量将减少,占有率将增加,速度也会减校但是仅单个从流量或者占有率以及速度的增加、减少来对交通拥挤事件做出判断,往往不能反映出拥挤过程的实质。事实上,由于在单位时间内检测到的车辆数增加,如果车速保持不变,必然导致占有率的增长,如果流量的相对增量大于占有率的相对增量,则可以判断出路口车流在这一段时间内处于消散状态,反之可以判断出车流处于拥挤形成状态。
假设交通流是不间断的连续流,则交通流基本模型成立,即
由(9)式可以看出,当车流在正常运行状态下并且地点平均车速不变时,流量和占有率成正比,且变化率相等,流量的相对增量与占有率的相对增量近似关系可以用y=x直线表示。由此,可以得知在交通事件发生时:
1) 当流量的相对增量大于占有率相对增量时,速度在变大,车流趋于畅通状态。
2) 当流量的相对增量小于占有率相对增量时,速度在减小,车流趋于拥挤状态。
2 交通拥挤检测算法
2.1 交通拥挤检测算法的基本原理
系统设定采样周期为t,从t0开始统计,把总采样时间划分为若干个时间段,各个时间段都有相同的时间间隔t,划分形式为[t0,t1],[t1,t2],[t2,t3],…[tn-1,tn]…。设A处的阅读器在第j个时间段内检测的流量和占有率分别用QA(j)和CA(j)来表示,地点平均车速用来表示。为了降低误判率,则路口发生交通拥挤事件的必要条件是:
1) A处阅读器在连续3个周期内检测出地点平均车速均小于30 km/h,或者A处阅读器在连续2个检测周期内检测出占有牢相对增量均大于流量相对增量,并且地点平均车速在此两个周期内的值均低于30 km/h。此时可以判定路口严重交通拥挤事件发生。
2) A处阅读器在连续2个周期内检测出地点平均车速均小于30 km/h,并且占有率相对增量大于流量相对增量的时间段不连续,此时可以判定路口一般性交通拥挤事件发生。
3) A处阅读器只在一个周期内检测到地点平均车速小于30 km/h,并且此周期的占有率相对增量大干流量相对增量,此时可以判定路口轻度交通拥挤事件发生。
2.2 交通拥挤检测算法的逻辑框图
首先定义图4框图算法中的参数:QA(j)为阅读器A处第j个周期内检测到的流量值;CA(j)为阅读器A处第j个周期内检测到的占有率;为阅读器A处第j个周期检测到的地点平均车速;△QA(j)为阅读器A处第j个周期内的流量相对增量,△CA(j)为第j个周期内的占有率相对增量;v0为根据路口实际情况设定的速度阈值30 km/h;M(j)为占有率相对增量与流量相对增量相比较的计数值,P(j)为地点平均车速低于阈值的计数值。其中△QA(j)、△CA(j)的计算公式如下:
3 算例分析
以扬州市文昌路与扬子江路交叉口作为数据采集岗,并以距离停车线150 m的文昌中路上由西向东双车道实际采集到的数据为例,运用图4的检测算法把采集到的交通流数据导入Matlab编写的算法程序,对交通拥挤事件进行判别。具体的计算流程如图5所示。
现在取09:11~09:25内分10个采样周期的数据为例作表1分析。经过算法计算得到10个采样周期内每个时间段的交通情况,按照算法流程得到判别指标时序。
程序中的逻辑判断部分代码如下:
4 结论
文中方法以RFID采集的交通流数据为基础,提出了一种新的交通流拥堵检测判别算法,该方法可以为实时交通状态自动识别奠定一定的研究基础,并且突破了传统的交通流检测模式,为物联网引入智能交通提供可能性研究。随着我国大力发展智能交通系统(ITS),以及物联网行业的蓬勃发展,物联网与智能交通相结合是必然的趋势。因此RFID作为物联网的信息采集前端用于智能交通必定有广阔的应用前景。
作者:张正华 胡方来 吴韬 殷有烨 戴磊 来源:现代电子技术
- 公安/司法/防伪 多元化物联网射频技术(09-16)
- RFID在开架书库管理中的应用研究(01-13)
- 一种微波频段有源RFID系统设计(08-23)
- RFID技术分类研究(09-23)
- RFID简介和发展(12-18)
- RFID的分类(01-10)