物联网RFID智能交通拥堵判别算法的研究与实现
无线射频识别技术(RFID)是一项非接触式自动识别技术,具有信息量大,抗干扰能力强,操作快捷等许多优点。特别是RFID技术在高速运动物体识别、多目标识别和非接触识别等方面具有优势,使其在很多领域都有巨大的发展潜力,因此把RFID技术应用来针对局部区域的交通智能化而形成"车联网"具有很高的可行性。
目前,对交通拥挤事件自动检测算法的研究相对较少,仍然处于初始阶段,并且利用RFID采集交通参数来判定交通拥堵的案例更是少之又少。在中国普遍采用的城市道路交通拥挤自动检测算法主要是以路段上地感线圈检测车流速度的降低、道路占有率的增加以及拥挤车流的存在为依据。算法依据实际路网的通行能力,设定流量和占有率的极限值来划分交通是否处于拥挤状态。但是此种方法采集的交通信息过于单一化,只能采集交通流信息,对于车辆的具体信息必须通过辅助设备才能获取,增加了成本,而且安装时需要破坏路面,影响道路使用寿命。
笔者针对物联网与智能交通相结合的需求,提出一套基于RFID的交通流检测方法,并根据扬州市城市道路建设规模以及扬州市各路口与路段统计的车流量特点,对扬州市道路拥挤行为的特征变量进行了深入的分析,以RFID设备采集到的流量相对增量、占有率相对增量以及地点平均车速这3个重要的指标为基础,通过理论推导和统计分析,构造出拥挤自动检测算法,为交通管理部门提供决策依据。
1 交通拥挤检测模型的建立
1.1 交通流参数的选取
道路交通参数是交通拥挤状态自动判别的基础,为了使交通拥挤自动判别具有良好的效果,选择的参数应该具有直观和可靠的特点。应使采用这些参数的算法具有较强的有效性和可移植性。目前,车辆行驶速度、车流量和占有率是评价交通状态最常用的3个交通参数。因此笔者综合采用车辆占有率、流量和速度3个参数作为交通拥挤自动判别的参数。这里的车辆占有率主要是车辆的时间占有率,指在一定的观测时间内,交通检测器被车辆占用的时间总和与观测时间长度的比值。
1.2 交通流参数数据采集处理的基本原理
文中采用RFID数据采集系统作为交通流参数数据采集前端。其由3部分组成:电子标签,阅读器和天线。
基于阅读器可以远距离读取,而且对高速运动的标签也能够准确捕获的原因,在此笔者把其运用到交通领域来采集车辆信息从而反映交通流信息。其采集原理是将射频标签贴在汽车挡风玻璃上,每个标签都是唯一的且对应着特定户主的车辆。标签中存储汽车的身份信息,包括车辆型号、车牌号码、车主姓名、车子有无注册等信息。当贴有射频标签的汽车经过阅读器的辐射场时标签会产生感应电流被激活,然后和阅读器进行无线通信,射频标签将自身编码等信息通过卡内置发送天线发送出去,系统接收天线接收到从射频卡发送来的载波信号,经天线调节器传送到阅读器,然后阅读器把读取的数据传输到计算机数据处理系统进行处理。因此每辆车经过阅读器的RF场时标签被读取的次数、时间、场强及车辆的基本信息都被阅读器记录可供交通部门分析。具体的采集方式如图1所示。
如图2所示,在实际安装应用中,每个阅读器安装完成后会形成一个固定长度L的RF场,阅读器距离地面的垂直高度为H。为了便于分析,文中需要提取每辆车经过阅读器RF场时标签被扫描到的次数、标签被扫描时系统记录的时间以及对应场强值RSSI,阅读器的阅读周期可以设定为T,即每隔T时间扫描一次。系统设定统计时间周期为t,即每隔时间t进行一次数据采样。根据车辆行驶的特征以及RF场长度相对于行程路程较短的特点,可以假定每辆车经过RF场时是平行车道运动的。
假设在第j个时间周期ti内有n辆车通过RF场,第i辆车经过RF场时被检测到的次数为Ni,标签被扫描的时刻记为tik(k=1,2,…,Ni),对应的场强值记为RSSIk(k=1,2.…,Ni)。根据文献提出阅读器接收到的场强值与距离关系的经验公式:
联合公式(1)、(2)、(3)、(4)、(5)、(6)计算出某个周期的检测点车流量,地点平均车速以及时间占有率,根据这些参数值并依据下文介绍的判别算法实现交叉路口交通流拥挤信息的判别。
1.3 交通流拥挤的判别准则
由于道路上交通流的复杂性,在路网中行进的车流运行状态随着时间的变化而时刻改变。在运行行为上,可以用畅通,轻度拥挤,一般拥挤,严重拥挤来描述。根据公安部交通部发布的《城市道路管理评价指标体系》规定,城市路段的平均车速大于30 km/h时被视为畅通;平均车速在20~30 km/h之间时被视为轻度拥挤;平均车速在10~20 km/h之间时被视为一般性拥挤;平均车速在10
- 公安/司法/防伪 多元化物联网射频技术(09-16)
- RFID在开架书库管理中的应用研究(01-13)
- 一种微波频段有源RFID系统设计(08-23)
- RFID技术分类研究(09-23)
- RFID简介和发展(12-18)
- RFID的分类(01-10)