微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 利用Σ-Δ ADC在工业多通道数据采集系统中进行信号调理

利用Σ-Δ ADC在工业多通道数据采集系统中进行信号调理

时间:10-23 来源:21ic 点击:

容。f是输入信号频率。VIN(f)是MAX11040的输入电压。

可以利用类似方法进行差分输入设计。

  为保持高精度电阻分压比和正确的旁路特性,应选取低温度系数、精度为1%甚至更好的金属薄膜电阻。电容应选取高精度陶瓷电容或薄膜电容。最好选择信誉较好的供应商购买这些元件,例如Panasonic®、Rohm®、Vishay®、Kemet®和AVX®等。

  MAX11040EVKIT提供了一个全功能、8通道DAS系统,评估板能够帮助设计人员加快产品的开发进程,例如,验证图2中所推荐的原理图方案。

  图3. 基于MAX11040EVKIT的开发系统框图,需要两个精密仪表对测量通道进行适当校准。测量结果可以通过USB发送到PC机,然后转换成Excel®文件作进一步处理。

  函数发生器产生的±5V信号连接到MAX11040的通道2,而另一函数发生器产生的±10V信号连接到MAX11040的输入通道1。电阻分压网络R1/R2和R3/R4对±5V或±10V输入进行相应的调整,使其接近ADC的满量程范围(FSR = ±2.2VP-P)。

  电阻分压网络R1和R2的取值以及旁路电容C1和C2的取值如表2所示,均由式1计算得到,接近最佳的输入动态范围(约±2.10VP-P)。该动态范围限制在0.05%相当高的精度范围,非常适合MAX11040。有关精度指标的详细信息,请参考MAX11040数据资料。

表2. 图3中的电阻和旁路电容计算 VTR

  表2列出的计算值均来自式1的计算结果和图3定义的精确测量。表格顶部给出了式1在标称输入电压下的理论计算结果,选择标准的分立元件。表2底部给出了演示系统中实际测量的元件值以及测试误差,同时还给出了用于FSR校准和计算得到的KCAL系数,计算公式如下:

  校准系数KCAL按照式2计算:

KCAL = VTRMAX/(VADCMAX - VADC0) (式2)

  式中:VTRMAX是输入最大值,分别代表±5V或±10V输入信号。VADCMAX是测量、处理后的ADC值,MAX11040评估板设置与图3相同,输入信号设置为VTRMAX。VADC0是测量、处理后的ADC值,MAX11040评估板设置与图3相同,输入信号设置为VIN = 0 (系统零失调测量)。KCAL (本实验中)是针对特别通道的校准系数,根据VADC计算输入信号VTR。

  KCAL误差计算显示只基于标称值的KCAL"理论值"可能与基于实际测量值计算的KCAL之间存在1%左右的误差。

  所以,只是依靠理论计算还不足以支持实际要求;如果设计中需要达到EU IEC 62053标准要求的0.2%精度,就必须对每个测量通道进行满量程(FSR)校准。

  表3所示结果验证了½ FSR输入信号的测量。利用高精度HP3458A万用表测量数据,利用式2中的校准系数KCAL得到ADC测量值和计算值。

表3. 验证½ FSR输入信号对应的测量结果

  表3中的VTR_M表示输入½ FSR信号时的测量值,而VTR_C表示基于MAX11040测量值和KCAL处理、计算得到的数值。

  结果显示调理后的电路测量误差VERR低于0.03%,可轻松满足EU IEC 62053规范要求的0.2%精度指标。

  图4. MAX11040EVKIT GUI允许用户方便地设置各种测量条件:12.8ksps、256采样点/周期和1024次转换。此外,GUI的计算部分提供了一个进行快速工程运算的便捷工具。

  测量结果也可以通过USB口传送到PC端,从而利用强大的(而且免费)的Excel进行详细的数据分析。

  结论

  MAX11040等高性能多通道同时采样、Σ-Δ ADC非常适合工业应用的数据采集系统。这些新型ADC设计能够提供高达117dB的动态范围,有效改善积分非线性和微分非线性,采样速率高达64ksps。选择适当的信号调理电路,MAX11040能够满足甚至优于高级"智能"电网监控系统的指标要求¹。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top