开关电源中RC缓冲电路的设计
%。这里取Vdc=48 V。
2.2 实验分析
下面分两种情况对该设计进行实验分析,一是初级绕组有缓冲,次级无缓冲;二是初级无缓冲,次级有缓冲。
(1)初级绕组有缓冲,次级无缓冲
该实验测量的是开关管Q两端的漏源电压,实验分以下两种情况:
第一种情况是RS1=1.5 kΩ,CS1不定,输入直流电压Vdc为48 V。
其实验结果为:在RS1不变的情况下,CSl越大,虽然开关管Q的漏感尖峰电压无明显降低,但它的漏源电压变得平缓了,这说明在初级开关管的RC缓冲电路中,CSl应该选择比较小的值。
第二种情况是CSl=33 pF,RS1不定,输入直流电压Vdc为48 V。其结果是:当CS1不变时,RS1越大,开关管Q的漏感尖峰电压越大(增幅比较小)。
可见,RC缓冲电路中,参数R的大小对降低漏感尖峰有很大的影响。在选定一个合适的C,同时满足式(2)时,R应该选择比较小的值。
(2)次级绕组有缓冲,初级无缓冲
本实验以D2、D3的阴极作为公共端来测量快恢复二极管的端压,其结果是,当R不变时,C越大,二极管两端的漏感尖峰越小。同时理论上,如果C为无穷大时,二极管两端的电压中就没有漏感尖峰。而在实际中,只需让二极管两端电压的漏感尖峰电压在其端压峰值的30%以内就可以满足要求了,这样同时成本也不会太高。
2.3 设计参数的确定
通过实验分析可见,在次级快恢复二极管的RC缓冲电路中,当选择了适当大小的电容C时,在满足式(2)的情况下,电阻R应该选择得越小越好。
最终经过实际调试,本设计选择的RC缓冲电路参数为:
初级:RS1=200,CSl=100 pF
次级:RS2=RS3=5l,CS2=CS3=1000 pF
本设计的初级开关管的RC缓冲电路中的C值虽然选得稍微比计算值大一些,但损耗也不是很大,因此还是可以接受的。相对初级而言,次级快恢复二极管的RC缓冲电路中的C值就选得比计算值大得多,系统的损耗必然增大。但是,并联在快恢复二极管两端的RC缓冲电路主要是为了改善系统输出性能,因此选择比较大的C值虽然会使系统的整体效率降低,但二极管两端的漏感尖峰就减小了很多,而且输出电压的纹波也可以达到指定要求。
3 结束语
根据以上给出的公式,可以很好而且很方便地选择出合适的RC缓冲电路。但是在工程应用中,应该根据系统设计的性能指标,通过实际调试才能得到真正合适的参数。有时候,为了达到系统的性能指标,牺牲一定的效率也是必要的。总之,在设计RC缓冲电路参数时,必须综合考虑系统性能和效率,最终选择合适的RC参数。
- FUJITSU TEN公司采用ADI公司SHARC DSP实现汽车音响系统的声学空间控制(01-12)
- 基于OrCAD/PSpice的信号产生电路设计(04-04)
- VGA旌接RCA接口转换器(04-05)
- 解析PRT自激励振方式VRC软开关变换电源技术(03-13)
- 一种集成RCC式开关电源器件设计及应用(04-16)
- 基于RC正弦波振荡电路的电子琴设计(07-01)