开关电源电磁干扰抑制技术
,然后将整个屏蔽罩与系统的机壳和地连接为一体,就能对电磁场进行有效的屏蔽。然而在使用整体屏蔽时应充分考虑屏蔽材料的接缝、电线的输入/输出端子和电线的引出口等处的电磁泄露,且不易散热,结构成本大幅度增加等因素。
为使电磁屏蔽能同时发挥静电屏蔽的作用,加强屏蔽效果,同时保障人身和设备的安全,应将系统与大地相连,即为接地技术。接地是指在系统的某个选定点与某个接地面之间建立导电的通路设计。这一过程是至关重要的,将接地和屏蔽正确结合起来可以更好地解决电磁干扰问题,又可提高电子产品的抗干扰能力。
1.3 PCB设计技术
为更好地抑制开关电源的电磁干扰,其印制电路板(PCB)的抗干扰技术尤为重要。为减少PCB的电磁辐射和PCB上电路间的串扰,要非常注意PCB布局、布线和接地。如减少辐射干扰是减小通路面积,减小干扰源和敏感电路的环路面积,采用静电屏蔽。而抑制电场与磁场的耦合,应尽量增大线间距离。
在开关电源中接地是抑制干扰的重要方法。接地有安全接地、工作接地和屏蔽接地等3种基本类型。地线设计应注意以下几点:交流电源地与直流电源地分开;功率地与弱电地分开;模拟电路与数字电路的电源地分开;尽量加粗地线。
1.4 扩频调制技术
对于一个周期信号尤其是方波来说,其能量主要分布在基频信号和谐波分量中,谐波能量随频率的增加呈级数降低。由于n次谐波的带宽是基频带宽的n倍,通过扩频技术将谐波能量分布在一个更宽的频率范围上。由于基频和各次谐波能量减少,其发射强度也应该相应降低。要在开关电源中采用扩频时钟信号,需要对该电源开关脉冲控制电路输出的脉冲信号进行调制,形成扩频时钟(如图3所示)。与传统的方法相比,采用扩频技术优化开关电源EMI既高效又可靠,无需增加体积庞大的滤波器件和繁琐的屏蔽处理,也不会对电源的效率带来任何负面影响。
1.5 一次整流电路中加功率因数校正(PFC)网络
对于直流稳压电源,电网电压通过变压器降压后直接通过整流电路进行整流,所以整流过程中产生的谐波分量作为干扰直接影响交流电网的波形,使波形畸变,功率因数偏低。为了解决输入电流波形畸变和降低电流谐波含量,将功率因数校正(PFC)技术应用于开关电源中是非常必要的。PFC技术使得电流波形跟随电压波形,将电流波形校正成近似的正弦波,从而降低了电流谐波含量,改善了桥式整流电容滤波电路的输入特性,提高了开关电源的功率因数。其中无源功率因数校正电路是利用电感和电容等元件组成滤波器,将输入电流波形进行移相和整形过程来实现提高功率因数的。而有源功率因数校正电路是依据控制电路强迫输入交流电流波形跟踪输入交流电压波形的原理来实现交流输入电流正弦化,并与交流输入电压同步。两种方法均使功率因数提高,后者效果更加明显,但电路复杂。
2 结语
本文的设计方法正确,仿真结果正常,克服了传统方案中所存在的一些问题,使电磁干扰的抑制技术得到进一步优化。从开关电源电磁干扰产生的机理来看,有多种方式可抑制电磁干扰,除本文中分析的几种主要方法外,还可以采用光电隔离器、LSA系列浪涌吸收器、软开关技术等。抑制开关电源的电磁干扰,目的是使其能在各领域得到有效应用的同时,尽量减少电磁污染,实现了对电磁污染问题的有效治理。而在实际设计时,应全面考虑开关电源的各种电磁干扰,选用多种抑制电磁干扰的方法加以综合利用,使电磁干扰降到最低,从而提高电子产品的质量与可靠性。
- 高端电流检测:差动放大器vs.电流检测放大器(04-28)
- 电磁探伤仪电源系统研究(09-22)
- 高速数字电路电源系统的电磁兼容研究(11-20)
- 长线传输的阻抗匹配设计(01-15)
- 浅谈电磁继电器的参数、种类和选用方法(01-13)
- 单相异步电动机检修方法(01-02)