开关电源中PWM芯片待机功能的研究
1 引言
待机是指产品已连接到电源上,但处于未运行在其主要功能时的状态。待机的目的就是要降低电源在空载或轻载时的损耗。随着电器和网络产品的普及,电子产品待机状态下的耗电量越来越引起国际节能,环保组织和有关国家的重视。待机能耗不仅浪费电能,而且也制造巨大的环保压力。我们知道开关损耗与电源的工作频率成正比,因此,可以设法在电源输出功率变小乃至于进入待机状态时,使其工作频率降低。这可以通过许多控制功能芯片来实现,例如集成芯片L5991等。目前,很多PWM芯片还不具有变频的待机功能,因而,我们可以借鉴L5991芯片的这个功能电路来实现其他PWM芯片的待机功能。
2 L5991芯片的待机功能电路介绍
L5991芯片,是由BCD60II技术发展而来的,设计目的是用一个固定频率的电流模式控制,实现离线式DC/DC电源应用。L5991是一个标准电流型PWM控制器,该控制器具有可编程软启动,输出/输入同步,闭锁(用于过压保护和电源管理),精确的极限占空比控制,脉冲电流限制,用软启动来进行过流保护,和当空载或轻载时使振荡器频率降低的待机功能等优点。
图1是该芯片待机功能的基本内部电路。管脚2外接两个电阻(RA和RB)和一个电容(CT),照图1中连接,是用来分别设置振荡器正常运行的工作频率(fosc)和待机模式的工作频率(fsb)。实际上,只要待机信号是高电平,该管脚能通过一个N沟道FET内部连于参考电压Vref,所以,定时电容CT通过RA和RB放电。当待机信号变低,N沟道FET就关闭且该管脚悬空,CT只通过RA放电,这样振荡器频率就会变低。VCT在正常运行中由Vref通过RA和RB控制,而在待机时通过RA来进行调控。当CT上的电压达到3V时,电容会快速地内部放电。当电压降到1V时,它开始再次充电。
图1 L5991芯片的待机功能基本电路
正常运行中RT将等于RA//RB,其频率公式为
fosc≌ (1)
而在待机时RT=RA,其频率公式为:
fSB≌ (2)
式中:KT=
L5991通过对与负载相联系的反馈电压进行检测,在负载降低到一个定义值(由电路中的元器件参数来控制)时自动降低振荡器频率,而当负载增加并超过第二个极限值时恢复其正常工作频率。这样,由L5991控制工作频率的系统,就可以依靠其待机功能来实现系统待机和工作时的频率转换。当系统待机时,频率降低,可以通过对电路参数的设置使待机频率变得很低,从而降低了开关损耗。
L5991作为一个电流型控制器,其误差放大器的输出电压Vcomp,除偏移量外,是跟主电流峰值成比例的。所以,可以通过监控Vcomp来推测电源的负载情况。
假如,由于负载减小使得主电流峰值降低,且Vcomp降低到一个固定极限(VT1)时,振荡器频率将被设置到一个较低的数值上(fsb)。假如,主电流峰值增加且Vcomp超过VT2时,振荡器频率将重置在正常值上(fosc)。频率的变化引起Vcomp的变化,并且由于能量平衡原因而方向相反,因而,提供一个恰当的滞后便可以防止振荡器频率在fsb与fosc之间变动。
3 反激式开关电源待机功能的实现
根据上述L5991芯片的待机原理,我们可以试想,在UC3842构成的反激式开关电源的基础上加入待机功能。通过对与负载相联系的反馈电压进行检测,利用芯片内部的误差放大器的输出值,对频率进行改变。
UC3842芯片的管脚1为误差放大器输出,图2为芯片待机功能的基本电路。
图2 芯片待机功能的基本电路
该电路的主要原理是:检测反馈电压经误差放大器后的输出值,通过一个迟滞比较器(施密特触发器),驱动开关管的开通或者关断,来实现RT的改变,从而改变电源的振荡频率。
我们可以看到,电源处于何种工作状态(正常工作或是待机),取决于迟滞比较器的阈值的设定,而该阈值取决于电源待机和正常工作时的误差放大器的输出值。
在实际设计的电路中,电源电路空载时,输出约为1.6V,而非轻载时为1.8V以上,因而,我们根据这个值来设定迟滞比较器的阈值。迟滞比较器由555芯片加上外围的电阻构成,该比较器的电路图如图3所示。
图3 迟滞比较器电路
图3中,555芯片的基准电源VDD为+5V,由UC3842的脚8输出基准电压给定。迟滞比较器的上下阈值计算如下:
VTH=VDD (3)
VTL= (4)
根据以上确定的阈值,确定各个电阻的阻值。
电源电路负载变化时,根据迟滞比较器的阈值,电源工作在相应的频率。
4 试验结果
根据以上原理搭构了由UC3842芯片控制的单端反激式开关电源电路[1][2][3],并加入了待机电路,其中取CT=4700μF,RA=RB=20kΩ,验证了以上原理。
图4为空载切换成带5W负载时的频率变化,频率由20kHz变成40kHz,而当切换回空载时,频率则由40kHz变回了
- CMOS求和比较器在PWM开关电源控制中的应用(11-27)
- 改善 PWM 电源控制器低负载运行的缓冲放大器和 LED(01-16)
- 负输出罗氏变换器实用性剖析(01-09)
- 一种新型ZCS-PWM Buck变换器研究(02-20)
- PWM技术实现方法综述(02-19)
- 基于HPWM技术的大功率正弦超声波逆变电源(02-26)