电网有源滤波器结构及其应用
结构图如图4。这种装置相当于一个电压控制电压源,通过对电源电压中的谐波分量的检测,产生与之相反的附加电压信号,从而实现系统与谐波的隔离,使电源端电压恢复正弦波形。这种方式的特点是有源滤波器作为电压源串联在电源和基波源之间,它主要用于消除带电容二极管整流电路等,电压型谐波源负载对系统的影响,以及系统侧电压谐波与电压波动对敏感负载的影响。
与并联型APF相比,由于串联型APF中流过的是正常负荷电流,因此损耗较大;此外,串联型APF的投切,故障后的退出及各种保护也较并联APF复杂。因此,目前应用较多的是串联型APF与PF混合使用方式。图5为这种方式的典型系统结构。该方案的特点是谐波基本由PF补偿,而APF作用只是改善PF的滤波特性。
3.3 混合型有源滤波器
混合型是指串联APF和并联APF的混合使用。如图6,串联的APFI将电源与负载隔离,阻止电源谐波电压传入负载端,同时也阻止了负载中的谐波电流污染电网;并联的APFII则提供了一个低阻抗的谐波电流支路,用于吸收负载中的谐波电流,阻止负载中的谐波电流在电源端产生额外的谐波电压。
这种混合型APF结合了串联型APF和并联型APF的优点,又称为统一电能质量调节器(UPQC)。混合型APF结构的主要缺点是控制方法复杂,成本较高。
4 有源滤波器的发展趋势
有源滤波器是改善供电质量,净化电网污染的一种有效装置,自从七十年代提出以来,有源滤波技术得到了长足的发展,越来越多的APF投入了运行,无论从现实功能还是运行功率上都有明显进步。目前,APF已经运用在提高电能质量,解决三相电力系统中终端电压调节,电压波动抑制,电压平衡改善以及谐波消除和无功补偿等问题上。从近年来的研究和应用[1-8]可以看出,有源滤波器的发展前景如下:
1)随着新型能源的发展,有源滤波器的运用范围得到极大扩展。特别是新型能源发电后并入电网时,有源滤波器可减少其对电网产生危害,如文献[8]介绍了一种可运用于太阳能发电的有源滤波器。
2)从成本和效率,以及扩大容量来说,APF与PF混合使用的有源滤波器系统将得到更加广泛得运用。
3)有源滤波器装置的多功能化也是其发展的一个方向。APF在消除高次谐波的同时,提高电力系统的稳定性,抑制闪变和补偿无功。这样既符合电力系统发展的需要,又从功能上降低了装置得成本。
5 结束语
本文在介绍有源滤波器的工作原理的基础上,分析了各种有源滤波器的结构特点,总结了有源滤波器的发展现状,展望了有源滤波器的发展趋势。
随着我国电力事业的发展,电能质量的要求将不断提高,利用有源滤波进行电能质量治理有着巨大的市场潜力。特别在补偿谐波、无功功率、中线电流、不平衡电流等方面,有源滤波技术必将拥有更加广阔的前景。
- 单片机嵌入式系统在运程电网监测系统中的应用(05-13)
- 打开通往未来智能电网之路(02-28)
- 10kV配电网节能降耗的途径(05-14)
- 电网谐波的产生及其检测方法分析(06-03)
- 恩智浦智能电表解决方案(03-30)
- 安森美半导体应对智能电网挑战的高能效解决方案(05-13)