电子管OTL功放原理及电路
OTL是英文OUTPUT Transformer Less AMPLIFIER的简称,是一种无输出变压器的功率放大器。
一. OTL电子管功放电路的特点
普通电子管功率放大器的输出负载为动圈式扬声器,其阻抗非常低,仅为4~16Ω。而一般功放电子管的内阻均比较高,在普通推挽功放中屏极至屏极的负载阻抗一般为5~10kΩ,故不能直接驱动低阻抗的扬声器,必须采用输出变压器来进行阻抗变换。由于输出变压器是一种电感元件,通过变压器的信号频率不同,其电感线圈所呈现的阻抗也不同。为了延伸低频响应,线圈的电感量应足够大,圈数也就越多,因此在每层之间的分布电容也相应增大,使高频扩展受到限制,此外还会造成非线性失真与相位失真。
为了消除这些不良影响,各种不同形式的电子管OTL无输出变压器功率放大器应运而生,许多适用于OTL功放的新型功率电子管在国外也不断被设计制造出来。电子管OTL功率放大器的音质清澄透明,保真度高,频率响应宽阔,高频段与低频段的频率延伸范围一般可达10HZ~100kHz,而且其相位失真、非线性失真、瞬态响应等技术性能均有明显提高。
二 电子管OTL功放电路的形式
图1(a)~图1(f)是OTL无输出功放基本电路。图1(a)和图1(b)为OTL功放两种供电结构的方式,即正负双电源式和单电源供电方式。在正负双电源式OTL功放中,中心为地电位。这样可保证推挽电路的对称性,因此可以省略输出电容,使功放的频率响应特性更佳。单电源式OTL电路为了使两只推挽管具有相同的工作电压,必须使中心点的工作电压等于电源电压的一半。同时,其输出电容C1的容量必须足够大,不影响输出阻抗与低频响应的要求。
图1(c)和图1(d)为OTL功放电子管栅极偏置的取法。由于上边管阴极不接地,因此上边管的推动信号由栅极与阴极之间加入,而下边管的推动信号可由栅极与地之间加入。至于其偏置方式,上边管可通过中心点对地分压后取出,而下边管的偏置电压必须另设专门的负压电源来供给。
图1(e)和图1(f)为OTL倒相电路的应用。图1(e)为采用屏阴分割式倒相电路对OTL功放进行激励。只要倒相管的屏极负载电阻RL与阴极负载电阻RK的阻值相等,其输出的激励电压总能获得平衡。
图1(f)为采用共阴极差分式倒相电路。由于共阴极电阻RK,的阻值较大,具有深度负反馈作用,故电路稳定可靠。同时,只要担任差分放大的上管与下管的屏极负载电阻取值相等,其两管的屏极总能输出一对相位相反、幅值相等的推动信号电压。
三、OTL功放电路的选管
对于电子管OTL功放的输出级,不是所有功率电子管均能适用,必须选用符合如下条件的功率电子管才能取得良好的效果。
1.低内阻特性
一般功率电子管的屏极内阻为10kΩ左右,不适用于OTL功放。OTL功放必须选用屏极内阻在200~800Ω的功率电子管。这些低内阻功率电子管有6AS7、6N5P、6C33C-B、6080、6336等。
2.低屏压、大电流特性
一般功率电子管的屏极电压均为400V左右,高屏压电子管可达800~1000V,而OTL功放必须选用屏极电压在150~250V之间的低屏压、大电流特性的功率电子管来担任。以上所列低内阻功率电子管均具有低屏压、大电流的工作特性。此外还有6C19、6KD*21A、*6等功率电子管。这些电子管本身具有低屏压、大电流特性,但其屏极内阻稍高,应多管并联才能适用于OTL功放。
3.采用新型OTL功放专用功率电子管
这类电子管不仅内阻较低,而且具有低屏压、大电流特性,如6HB5、6LF6、17KV6、26LW6、30KD*0KG6等。为了降低电子管灯丝的功耗,许多用于OTL功放的功率电子管的灯丝电压提高到20~40V,以便于串联使用。
四 几种OTL功放典型电路
1.新型三极功率管OTL功放
图2是6C33 C-B双三极管OTL功放电路图。本电路采用国外新型低内阻、大功率双三极管6C33C-B作OTL功放,每个声道用一对6C33C-B作功率放大,在输出8Ω负载时,每声道的输出功率可达40W。
本OTL功放输入级采用高放大系数双三极电子管12AX7组成前级差分兼倒相电路。该电路具有输入阻抗高、动态范围大的特点。为了拓宽频响、减小相位失真,输入级与推动级之间采用直接耦合的方式。为提高前级增益,在差分输入管12AX7的阴极加上-22 V 电压,并串接了一只1.1mA的恒流二极管,使前级工作更加稳定可靠。
推动放大级由中放大系数双三极电子管12BH7担任,该管特性与l2AU7、12JD8、5687等双三极管特性相近。为了增大屏极电流,提高推动级输出能力,特将两只三极管并联使用,每管屏极电压高达265V,组成共阴极推动放大电路。为提高推动级各项电性能、减小失真、拓宽频响,在两管的阴极加有较深的电流负反馈。
OT
- 几款经典电子管前级线路的特色(02-12)
- 几款经典电子管前级线路的特色(续)(02-12)
- 什么是真空管(02-07)
- 电气设备内部干扰的抑制(04-08)
- 电子管OTL功放电路及原理(01-18)
- 电子管功放交流声如何解决(08-20)
- 濡ゅ倹岣挎鍥╀焊閸曨垼鏆ョ€规悶鍎抽埢鑲╂暜閸繂鎮嬮柟瀛樺姇閻撹法鎷嬮鐔告畬缂佸顑呴〃婊呮啑閿燂拷
闁稿繈鍔嶉弻鐔告媴瀹ュ拋鍔呭☉鏃傚Т閻ㄧ姵锛愰幋婊呯懇濞戞挻姘ㄩ悡锛勬嫚閸☆厾绀夐柟缁樺姇瀹曞矂鎯嶉弬鍨岛鐎规悶鍎扮紞鏃堟嚄閽樺顫旈柨娑樿嫰婵亪骞冮妸銉﹀渐闂侇偆鍠愰崹姘舵⒐婢舵瓕绀嬪ù鍏坚缚椤懘鎯冮崟顐ゆ濡増鍨垫导鎰矙鐎n亞鐟�...
- 濞戞搩鍘炬鍥╀焊閸曨垼鏆ョ€规悶鍎抽埢鑲╂暜閸繂鎮嬮柟瀛樺姇閻撹法鎷嬮鐔告畬缂佸顑呴〃婊呮啑閿燂拷
缂侇噣绠栭埀顒婃嫹30濠㈣埖宀稿Λ顒備焊閸曨垼鏆ラ柛鈺冾攰椤斿嫮鎷犻崜褉鏌ら柨娑樺缁楁挾鈧鍩栧璺ㄦ嫚閹惧懐绀夐柛鏂烘櫅椤掔喖宕ㄥΟ鐑樺渐闂侇偆鍠曢幓顏堝礆妫颁胶顏卞☉鎿冧簻閹酣寮介悡搴f濡増鍨垫导鎰矙鐎n亞鐟庨柣銊ュ椤╋箑效閿燂拷...
- Agilent ADS 闁轰焦鐟ラ鐔煎春绾拋鍞查悹鍥у⒔閳诲吋绺藉Δ鍕垫
濞戞挻鎸搁宥夊箳閸綆鍤﹂柨娑樿嫰閸欏繘妫冮姀锝庡敼閻熸瑯鏋僁S闁告艾瀚~鎺楀礉閻旇鍘撮柛婊冭嫰娴兼劗绮欑€n亞瀹夐柣銏╃厜缁遍亶宕濋埡鍌氫憾闁烩偓鍔嶅〒鍫曟儗椤撶姵鐣遍柡鍐ㄧ埣濡法鈧冻缂氱槐鐧咲S...
- HFSS閻庢冻缂氱弧鍕春绾拋鍞查悹鍥у⒔閳诲吋绺藉Δ鍕垫
閻犙冨缁讳焦绋夐幘鎰佸晙闁瑰搫鐗愰鎶芥晬鐏炶棄寮块梻鍫涘灱椤斿骞掗崷娆禨S闁汇劌瀚慨娑㈡嚄閽樺瀚查幖瀛樻⒒閺併倝鏁嶇仦钘夌盎闁告柡鏅滈崑宥夊礂閵娾晜妗ㄧ紒顖濆吹缁椽宕烽弶娆惧妳濞戞梻濮电敮澶愬箵椤″锭SS...
- CST鐎甸偊鍠楃亸婵嗩啅閵夈倗绋婇悗骞垮€曢悡璺ㄦ媼椤撶喐娈岀紒瀣儏椤ㄦ粎鎲楅敓锟�
闁哄瀛╁Σ鎴澝虹€b晛鐦滈悹浣筋嚋缁辨繈宕楅妸鈺傛〃閻犱礁寮跺绶維T闁告艾瀚伴妴宥夊礉閻旇鍘撮柛婊冭嫰娴兼劗绮欑€n亞瀹夐柣銏╃厜缁辨繈宕濋埡鍌氫憾闊浂鍋婇埀顒傚枙閸ゆ粎鈧冻闄勭敮澶愬箵椤″T閻犱焦宕橀鍛婃償閺冨倹鏆�...
- 閻忓繐瀚伴。鍫曞春閾忚鏀ㄩ柛鈺冾攰椤斿嫮鎷犻崜褉鏌�
濞戞挸娲g粭鈧Δ鍌浬戦妶濂哥嵁閸愬弶鍕鹃悹褍鍤栫槐婵囨交濞嗗海鏄傞悹鍥у⒔閳诲吋绋夋潪鎵☉闁革负鍔岄惃鐘筹紣閹寸偛螚闁哄牜鍨堕。顐﹀春閻旀灚浜i悘鐐存礃鐎氱敻鎳樺鍓х闁瑰灚鎸风粭鍛村锤濮橆剛鏉介柣銊ュ缁楁挻绋夊顒傚敤缁绢厸鍋�...
- 鐎甸偊鍠楃亸婵堜焊閸曨垼鏆ユ繛鏉戭儔閸f椽骞欏鍕▕闁糕晝顢婇鍕嫚閸撗€鏌ら柛姘墦濞夛拷
閻犳劦鍘洪幏閬嶅触閸儲鑲犻柡鍥ㄦ綑閻ゅ嫰骞嗛悪鍛缂傚啯鍨甸崹搴ㄥΥ娓氣偓椤e墎鎷崣妯哄磿闁靛棔鑳堕妵姘枖閵忕姵鐝ら柕鍡曟娣囧﹪宕i柨瀣埍闁挎稑鏈崹婊呮啺娴e湱澹夐柡宥夘棑缁ㄥ潡鏌呴敓锟�...