利用高性能同时采样ADC降低高级电力线监测系统的成本
时间:12-01
来源:EDN
点击:
图2. MAX11046等多通道同时采样ADC可有效简化高级电网监测系统的设计 小尺寸封装 在许多电网监测应用中需要考虑物理尺寸问题,因为系统通常需要监测多路多相电源,特别是在电力分配中心。对于不同方案,ADC每个通道占用的电路板面积也不同,例如:MAX11040每个通道占用的面积是15.9mm2,尺寸只有其它厂商方案的一半。ADC较高的封装密度允许在PCB板上容纳更多通道,有助于减小整体测量系统的尺寸、功耗及成本。 过压保护 优化系统设计还必须避免系统在过压或其它电力线干扰下出现失效,MAX11040以及该系列的其它器件集成了过压保护功能(类似于ESD保护),保护电路使用了6V钳位二极管和内部逻辑电路,逻辑电路检测到过压时能够将故障位置位。其它ADC供应商采用了自己的保户架构,但多数需要使用外部二极管。 使用ADC时,检测电网的短路和开路故障是这类保护系统最重要的功能。通过观察ADC的数据进行检测。制定在什么条件下触发继电保护是一个复杂问题,很大程度上取决于监测系统厂商。尽管如此,比较公认的一种看法是:故障条件下触发继电器保护与不触发的结果同样糟糕。 结论 人们对电力需求的增长使得电力传输基础架构或"智能电网"的投资迅速增长,通过集成功率监测、负载均衡、保护以及表计功能,构建高级电力线监测系统,电力公司(和用户)能够更有效地监测、传输、使用并控制电网。 标准的多样性以及不同企业提出的种种要求一方面增加了电网监测系统的开发难度,另一方面也需要这些设备得到更普遍的认可。一些较为严格的标准,例如:EN 50160、IEC 62053和IEC 61850,规定了较高的能量检测精度,给出了严格的下限要求;这些标准还要求采样速率满足实时电力传输监测、故障检测以及动态负载均衡的要求。标准为现代多通道监测系统所使用的ADC制定了严格、清晰的原则。其它考虑因素,包括:有效输入阻抗(ZIN)、信号相位调节以及小尺寸封装等,也会影响ADC的选择。目前,高性能、同时采样ADC通常针对三相电(和零相)的监测及测量系统进行优化,这些器件也成为高密度设计的首选方案,在提供高性能指标的同时还能够降低整体系统的成本,使电路板面积最小。 编辑:博子 |
- 12位串行A/D转换器MAX187的应用(10-06)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)
- 12位串行A/D转换器的原理及应用开发(10-09)
- 在射击探测器中增加口径确定功能的简单电路(11-13)
- 一种折叠共源共栅运算放大器的设计(11-20)
- 深入解析:模拟前端模/数转换器的三种类型 (11-26)