微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > D类MOSFT在发射机射频功放中的应用

D类MOSFT在发射机射频功放中的应用

时间:11-18 来源:EDN 点击:
1/Q3与Q6/Q8的射频激励信号相位相同,图3中标示为0°;Q2/Q4和Q5/Q7的射频激励信号同相位,图3中标示为180°。可见,桥式组态的MOS管为交替导通状态,并且其交替频率就是射频激励信号的频率,即发射机的载波频率。

2.1 全桥组态工作原理

图4所示为射频放大器的全桥组态,即四对MOS管用作开关。射频激励信号的相位情况是当射频功放模块接通时,这些开关中只有两个可以组合起来。并且,在激励信号的正半周,标示为0°的MOS管处于正半周,标示为180°的MOS管处于负半周。


在射频周期的负半周,Ql/Q3和Q6/Q8处于截止状态,相当于开关断开;Q2/Q4和QS/Q7则是饱和导通的,相当于开关接通。Q2/Q4和QS/Q7串联导通电源电压为+V,若忽略MOS管的饱和压降,+V将全部降落在合成变压器上。在射频周期的正半周,Q1/Q3和Q6/Q8处于导通状态,Q2/Q4和QS/Q7为截止状态。Ql/Q3和Q6/Q8串联导通电源电压+V,+V全部降落在合成变压器上。由图4可见,合成变压器初级电压方波输出相差180°,说明输出电压的峰峰值为+2V。MOS开关的作用就是有效地将整个电源电压跨接在合成变压器的初级绕组上,在射频激励信号的每半个周期是反相的。作为全桥组态,输出就是两倍电源电压的射频输出。为了防止直流电压通过变压器的绕组通地,应在每部分的射频输出都串联有隔直电容C。

2.2 半桥组态工作原理

以Q1/Q3和QS/Q7的工作情况为例,其工作原理如图5所示。


在射频功放模块的设计中,两个半桥式组态采用单独的电源和射频激励输入,这样可以使每个放大器两个半桥独立地进行工作。如将Q1/Q3源极和QS/Q7的漏极接在一起,射频输出从0V到+V,则可保证当一个全桥组态的射频功放模块在任何一个半桥出现故障时,射频功放模块仍然可以工作。只是射频输出电压减小为全桥组态的一半而已。

在射频激励信号的负半周,MOS管QI/Q3截止,QS/Q7导通,如图5(a)所示。而在射频激励输入信号的正半周,MOS管Q1/Q3导通,QS/Q7截止,如图5(b)所示。Q2/Q4和Q6/Q8的开关情况与此正好相反。跨在功率合成变压器初级两端的输出信号就在半个周期里,在地(约为0V)和正电源间进行一次切换,如图5(c)所示。

2.3 射频功放模块在关断时的射频电流

由于DX一200型DAM发射机的射频功放模块数为224,在不同的功率等级下所接通的射频功放模块的数量不同,其输出变压器的次级为串联输出,这就决定了关断的射频功放模块必须为在用的或者接通的功放模块提供一条低阻抗导电通路。其工作原理电路如图6所示。


因为在用的功放模块产生的射频电流必须流过合成变压器的次级,并在已关断的射频功放模块的初级绕组上感应出射频电压。根据楞次定律,变压器次级电流所产生的磁通总是试图抵消初级电流所产生的磁通,所以,流过关断功放输出变压器次级的电流感应到初级的电压后,一定和原来的输出电压极性相反。在如图6(a)所示,由次级电流感应到初级的电压为左正右负,说明关断的射频功放在导通状态下的变压器初级电压极性是左负右正,与此相对应的导通管为Q2/Q4,截止管为01/Q3,从而形成的低阻抗通路为:与Ql/Q3相并联的反向二极管→旁路电容C1、C3→旁路电容C2、C4→Q2/Q4→隔直电容C。同理,图6(b)所形成的低阻抗通路为:与Q2/Q4相并联的反向二极管→旁路电容C2、C4→旁路电容C1、C3→Q1/Q3。

3 MOSFET器件的维护和存储

图7所示为IRFP360的外型及表示符号。它的特点,一是具有隔离式的中心装配孔,并有重复性的雪崩定额;二是漏源之间并联有反向二极管,其电压变化率定额很大而且驱动电路比较简单,此外,同型号的管子并联也很容易。然而,由于MOS管的栅极输人阻抗较高,容易产生较高的感应电压,从而导致栅极易击穿,所以在维护中应特别注意。


一般情况下,应将MOS管存放在防静电包装袋内,或在各极短路的情况下保存。同时对存放库房应注意除尘,保持库房的清洁。在取用和安装过程中,应带好防静电手镯。更换管子时,应将新管的源极(S)接地,并使用防静电烙铁或焊接时拔掉烙铁的电源插头,并快速焊接。

4 结束语

利用MOS管的开关特性可使射频功率放大器工作于D类开关状态,以便提高整机效率、改善技术指标。希望通过本文的分析,为MOSFET的使用维护带来一些启迪。

编辑:博子

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top