雷电对弱电设备的干扰与防护
时间:10-28
来源:EDN
点击:
0 引言
随着科技的不断发展,人类已步入信息社会,计算机网络技术的普及使办公大楼、写字楼、医院、银行、宾馆等建筑离不开综合布线系统。配置综合布线系统,犹如为建筑物建立了一个高速、大容量的信息传送平台,为建筑智能化提供了快速的信息通道。计算机、程控交换机、 CATV等微电子设备日益增多,而微电子器件承受雷电电磁脉冲能力较差,因此,雷害事故不断发生。我国每年因雷击破坏建筑物内计算机网络系统的事件时有发生,造成的损失是非常巨大的。因此综合布线系统的防雷设计就显得尤其重要。
雷电入侵电器设备的形式有两种:直击雷和感应雷。雷电直接击中线路并经过电器设备入地的雷击过电流称为直击雷;由雷闪电流产生的强大电磁场变化与导体感应出的过电压、过电流形成的雷击称为感应雷。
目前,在建筑物防雷系统设计上,执行国家标准GB50057-94《建筑物防雷设计规范》,将由避雷网(带)、避雷针或混合组成的接闪器,立柱基础的钢筋网与钢屋架,屋面板钢筋等构成一个整体,避雷网通过全部立柱基础的钢筋作为接地体,将强大的雷电流人大地。计算机系统安置在建筑物内,受建筑物防雷系统保护,直击雷击中计算机网络系统的可能性非常小,计算机设备抗直击雷能力很低,防护设备非常昂贵,通常不必安装防护直击雷的设备,而计算机网络必须防感应雷和雷电浪涌电压。
1 干扰途径与耦合机制
产生干扰必须具备三个条件:干扰源、干扰通道、易受干扰设备。
干扰源分为内部和外部。内部主要是装置原理和产品质量等。外部主要由使用条件和环境因素决定。
干扰通道有传导耦合、公共阻抗耦合和电磁耦合三种。
由于设备采用敏感元件的选用和结构布局等不尽合理,造成本身抗干扰能力差。对干扰加以抑制,降低其幅度,减少其影响力,这是在外部环境采取措施加以改善。
1)干扰途径
感应雷可由静电感应产生,也可由电磁感应产生,形成感应雷电压的机率很高,对建筑物内的弱电设备威胁巨大,计算机网络系统及电话程控交换机的防雷工作重点是防止感应雷入侵。入侵计算机网络系统的雷电过电压过电流主要有以下三个途径:
(1)由交流电220V电源供电线路入侵
计算机系统的电源由电力线路输入室内,电力线路可能遭受直击雷和感应雷。直击雷击中高压电力线路,经过变压器耦合到220V低压,入侵计算机供电设备;另外低压线路也可能被直击雷击中或感应雷过电压。在220V电源线上出现的雷电过电压平均可达10 000V,对计算机网络系统可造成毁灭性打击。电源干扰复杂性中众多原因之一就是包含着很多可变因素,电源干扰以"共模"或"差模"方式存在。 "共模"干扰是指电源线与大地或中性线与大地之间的电位差。 "差模"干扰存在于电源相线与中性线之间。对三相电源来讲,还存在于相线与相线之间。电源干扰复杂性中的第二个原因是干扰情况可以从持续周期很短暂的尖峰干扰到全失电之间的变化。电源干扰的类型见表1。
电源干扰进入设备的途径;一是电磁耦合;二是电容耦合:三是直接进入。
(2)由计算机通信线路入侵可分为三种情况
①当地面突出物遭直击雷打击时,强雷电压将邻近土壤击穿,雷电流直接入侵到电缆外皮,进而击穿外皮,使高压入侵线路。
②雷云对地面放电时,在线路上感应出上千伏的过电压,击坏与线路相连的电器设备,通过设备连线侵入通信线路。这种入侵沿通信线路传播,涉及面广,危害范围大。
③若通过一条多芯电缆连接不同来源的导线或者多条电缆平行铺设时,当某一导线被雷电击中时,会在相邻的导线感应出过电压,击坏低压电子设备。
(3)地电位反击电压通过接地体入侵
雷击时强大的雷电流经过引下线和接地体泄入大地,在接地体附近呈放射型的电位分布,若有连接电子设备的其他接地体靠近时,即产生高压地电位反击,入侵电压可高达数万伏。建筑物防直击雷的避雷引入了强大的雷电流通过引下线入地,在附近空间产生强大的电磁场变化,会在相邻的导线(包括电源线和信号线)上感应出雷电过电压,因此建筑物避雷系统不但不能保护计算机,反而可能引入雷电。计算机网络系统等设备的集成电线芯片耐压能力很弱,通常在100V以多级层保护。
3)电源部分防护
弱电设备的电源雷电侵害主要是通过线路侵入。高压部分有专用高压避雷装置,电力传输线把对地的电压限制到小于6 000V(IEEEEC62.41),而线对线则无法控制。所以,对380V低压线路应进行过电压保护,按国家规范应有三部分:建议在高压变压器后端到二次低压设备的总配电盘间的电缆内芯线两端应对地加避雷器或保护器,作一级保护;在二次低压设备的总配电盘至二次低压设备的配电箱间电缆内芯线两端应对地加装避雷器保护器,作二级保护;在所有重要、精密的设备以及UPS的前端应对地加装避雷器或保护器,作为三级保护。目的是用分流(限幅)技术即采用高吸收能量的分流设备(避雷器)将雷电过电压(脉冲)能量分流泄入大地,达到保护目的。分流(限幅)技术中采用防护器的品质、性能的好坏是直接关系网络保护的关键,因此,选择合格优良的避雷器或保护器至关重要。
随着科技的不断发展,人类已步入信息社会,计算机网络技术的普及使办公大楼、写字楼、医院、银行、宾馆等建筑离不开综合布线系统。配置综合布线系统,犹如为建筑物建立了一个高速、大容量的信息传送平台,为建筑智能化提供了快速的信息通道。计算机、程控交换机、 CATV等微电子设备日益增多,而微电子器件承受雷电电磁脉冲能力较差,因此,雷害事故不断发生。我国每年因雷击破坏建筑物内计算机网络系统的事件时有发生,造成的损失是非常巨大的。因此综合布线系统的防雷设计就显得尤其重要。
雷电入侵电器设备的形式有两种:直击雷和感应雷。雷电直接击中线路并经过电器设备入地的雷击过电流称为直击雷;由雷闪电流产生的强大电磁场变化与导体感应出的过电压、过电流形成的雷击称为感应雷。
目前,在建筑物防雷系统设计上,执行国家标准GB50057-94《建筑物防雷设计规范》,将由避雷网(带)、避雷针或混合组成的接闪器,立柱基础的钢筋网与钢屋架,屋面板钢筋等构成一个整体,避雷网通过全部立柱基础的钢筋作为接地体,将强大的雷电流人大地。计算机系统安置在建筑物内,受建筑物防雷系统保护,直击雷击中计算机网络系统的可能性非常小,计算机设备抗直击雷能力很低,防护设备非常昂贵,通常不必安装防护直击雷的设备,而计算机网络必须防感应雷和雷电浪涌电压。
1 干扰途径与耦合机制
产生干扰必须具备三个条件:干扰源、干扰通道、易受干扰设备。
干扰源分为内部和外部。内部主要是装置原理和产品质量等。外部主要由使用条件和环境因素决定。
干扰通道有传导耦合、公共阻抗耦合和电磁耦合三种。
由于设备采用敏感元件的选用和结构布局等不尽合理,造成本身抗干扰能力差。对干扰加以抑制,降低其幅度,减少其影响力,这是在外部环境采取措施加以改善。
1)干扰途径
感应雷可由静电感应产生,也可由电磁感应产生,形成感应雷电压的机率很高,对建筑物内的弱电设备威胁巨大,计算机网络系统及电话程控交换机的防雷工作重点是防止感应雷入侵。入侵计算机网络系统的雷电过电压过电流主要有以下三个途径:
(1)由交流电220V电源供电线路入侵
计算机系统的电源由电力线路输入室内,电力线路可能遭受直击雷和感应雷。直击雷击中高压电力线路,经过变压器耦合到220V低压,入侵计算机供电设备;另外低压线路也可能被直击雷击中或感应雷过电压。在220V电源线上出现的雷电过电压平均可达10 000V,对计算机网络系统可造成毁灭性打击。电源干扰复杂性中众多原因之一就是包含着很多可变因素,电源干扰以"共模"或"差模"方式存在。 "共模"干扰是指电源线与大地或中性线与大地之间的电位差。 "差模"干扰存在于电源相线与中性线之间。对三相电源来讲,还存在于相线与相线之间。电源干扰复杂性中的第二个原因是干扰情况可以从持续周期很短暂的尖峰干扰到全失电之间的变化。电源干扰的类型见表1。
电源干扰进入设备的途径;一是电磁耦合;二是电容耦合:三是直接进入。
(2)由计算机通信线路入侵可分为三种情况
①当地面突出物遭直击雷打击时,强雷电压将邻近土壤击穿,雷电流直接入侵到电缆外皮,进而击穿外皮,使高压入侵线路。
②雷云对地面放电时,在线路上感应出上千伏的过电压,击坏与线路相连的电器设备,通过设备连线侵入通信线路。这种入侵沿通信线路传播,涉及面广,危害范围大。
③若通过一条多芯电缆连接不同来源的导线或者多条电缆平行铺设时,当某一导线被雷电击中时,会在相邻的导线感应出过电压,击坏低压电子设备。
(3)地电位反击电压通过接地体入侵
雷击时强大的雷电流经过引下线和接地体泄入大地,在接地体附近呈放射型的电位分布,若有连接电子设备的其他接地体靠近时,即产生高压地电位反击,入侵电压可高达数万伏。建筑物防直击雷的避雷引入了强大的雷电流通过引下线入地,在附近空间产生强大的电磁场变化,会在相邻的导线(包括电源线和信号线)上感应出雷电过电压,因此建筑物避雷系统不但不能保护计算机,反而可能引入雷电。计算机网络系统等设备的集成电线芯片耐压能力很弱,通常在100V以多级层保护。
3)电源部分防护
弱电设备的电源雷电侵害主要是通过线路侵入。高压部分有专用高压避雷装置,电力传输线把对地的电压限制到小于6 000V(IEEEEC62.41),而线对线则无法控制。所以,对380V低压线路应进行过电压保护,按国家规范应有三部分:建议在高压变压器后端到二次低压设备的总配电盘间的电缆内芯线两端应对地加避雷器或保护器,作一级保护;在二次低压设备的总配电盘至二次低压设备的配电箱间电缆内芯线两端应对地加装避雷器保护器,作二级保护;在所有重要、精密的设备以及UPS的前端应对地加装避雷器或保护器,作为三级保护。目的是用分流(限幅)技术即采用高吸收能量的分流设备(避雷器)将雷电过电压(脉冲)能量分流泄入大地,达到保护目的。分流(限幅)技术中采用防护器的品质、性能的好坏是直接关系网络保护的关键,因此,选择合格优良的避雷器或保护器至关重要。
- 数字电路的抗干扰设计(02-26)
- 数字式时间继电器抗干扰方法(03-23)
- 电磁兼容外场测试中的干扰抵消技术(03-29)
- 小波包技术在抑制窄带干扰中的应用(04-08)
- 可调增益程控滤波器的设计(05-08)
- 电源EMI滤波器插入损耗的研究(08-08)