生物神经电极放大器系统的设计与实现
时间:08-20
来源:电子技术
点击:
0 引言
生物信号的表现形式具有多样性,如:既有物理的声、光、电、力等类的变化;又有化学的浓度、气体分压、PH值等的变化。其特点是信号微弱、非线性、高内阻、干扰因素多等等,可反映生物体的生命活动状态,因此,生物信号的采集与处理是生物科学研究的重要手段之一。
而生物神经电极放大器系统(以下简称为肌电检测系统)的应用方向即为手术中对于病患脑部神经区域进行监测,虽然国内外已有类似的仪器系统,但国内的设计多数只局限于其中前置放大器的部分,而缺少系统性;而国外的系统则已经比较成型,但价格昂贵,且信号的后续处理还未采用数字化。
比较而言,本肌电检测系统强调了系统性,构成了一个完整的仪器,且采用了数字化的处理方法,对于系统将来的数字化改进提供了空间。同时,系统的成本大概在 2000元左右,而国外的产品,如德国的Neurosign100,价格约为10万元,成本大大降低。另外,由于是自主研发,所以拥有知识产权。
1 神经/肌电信号简介
肌电检测系统的应用方向即为手术中对于病患脑部神经区域进行监测,所采用的方法如图1所示。
首先产生一个连续的类神经信号作用于此神经的一端,再于该神经另一端所相连的肌肉上提取肌电信号进行放大、滤波等各种处理,最后以LED及声音的形式显示出来,用于实时检测该神经是否在手术过程中被碰到。
因此,对于所需要设计的放大器系统,需要生成一个类神经电信号作为刺激信号,而所需放大处理的生物信号为肌电信号。
神经信号和人体的其它生物信号有相同的一些特点,也有其独具的一些特征。根据神经生物学的研究,神经信号是一种形似脉冲的电信号,频率一般为1kHz左右,高的可达10kHz;且应为脉冲宽度为0.2ms的脉冲电流,峰值为0.05mA~1mA,频率有3Hz及30Hz两种选择。
2 电路的设计
肌电检测系统包括刺激电路、放大与滤波电路和显示处理电路,而对于电极也进行了设计,包括探针等,预期结果如图2所示。
图2左边为电信号激励源部分,用来刺激神经,可产生频率3Hz和30Hz两种电流脉冲,脉冲的宽度为0.2ms,峰值在0.05~5mA之间可调;右边为信号部分,用来处理接收肌肉产生的电信号。信号处理及显示提示部分的具体参数指标如下:分为两个通道,可以独立显示、提示收到的肌电信号的强度。用LED 灯显示肌电信号的强度,范围在30 μV~20mV之间;用蜂鸣器提示肌电信号的强度,音量可调。而接收肌电信号的电极有三个脚(V+)、(Vref)、(V-),供接收及处理部分使用。
2.1 刺激电路
由于要求输出脉冲电流,有3Hz及30Hz两种选择,且脉冲宽度为0.2ms,而脉冲电流不易直接产生,所以首先由脉冲产生电路产生电压脉冲,频率为3Hz和30Hz两种,脉冲宽度为0.2ms。然后经过V/I转换电路转换成电流脉冲,转换电路中包含可调旋钮,控制输出脉冲的峰值在0.05~5mA之间。
2.2 前置处理盒电路
来自探针的肌电信号先送入前置放大电路进行电压信号放大,然后再经过高通滤波处理,滤除极化电压及低频噪声,低频截止频率为5Hz(极化电压是由探针的V+和V-两脚插入肌肉的深度不同而产生的)。高通滤波后的电压信号再经过低通滤波,滤除高频噪声,高频截止频率为1kHz。低通滤波后的电压信号再经过工频陷波,滤除50Hz工频的电信号。至此,前置处理盒的处理过程完毕,处理后的电压信号供后级信号处理及显示提示电路使用。
2.3 信号处理及显示提示电路
前置处理盒输出的电压信号首先经过二级放大电路放大到合适的幅值,然后驱动LED,显示肌电信号的强度。同时,电压信号经放大处理后,送入扬声器电路,用以声音提示。
除上述蔓部分主要电路外,要完成一个整体系统还需要有电源电路及各接口电路,其中由于各部分电路对于电源的要求不同,电源电路将分为激励电路的电源、隔离器之前部分的正负15V电源、隔离器之后部分的正负15V电源、A/D部分的电源、LED的电源和扬声器的电源五个部分。
3 电路的测试
通过PCB制图后,我们制作了实验板。在此次实验板的基础上,我们做了多种测试,以检验所设计系统的性能。
3.1 刺激电路的测试
(1)当频率选择端置高电平时,555定时器的3脚输出电压波形为峰值约为4.16V,频率约为3.1Hz的脉冲波;当频率选择端置低电平时,输出则为峰值约为4.16V,频率约为30 Hz的脉冲波。证明了系统的脉冲电压产生及频率选择的功能工作正常。
(2)选择频率选择端置低电平,且在刺激电路的输出两端外接一个1kΩ的负载电阻,同时检测两端的电压,得波形如图3所示。
生物信号的表现形式具有多样性,如:既有物理的声、光、电、力等类的变化;又有化学的浓度、气体分压、PH值等的变化。其特点是信号微弱、非线性、高内阻、干扰因素多等等,可反映生物体的生命活动状态,因此,生物信号的采集与处理是生物科学研究的重要手段之一。
而生物神经电极放大器系统(以下简称为肌电检测系统)的应用方向即为手术中对于病患脑部神经区域进行监测,虽然国内外已有类似的仪器系统,但国内的设计多数只局限于其中前置放大器的部分,而缺少系统性;而国外的系统则已经比较成型,但价格昂贵,且信号的后续处理还未采用数字化。
比较而言,本肌电检测系统强调了系统性,构成了一个完整的仪器,且采用了数字化的处理方法,对于系统将来的数字化改进提供了空间。同时,系统的成本大概在 2000元左右,而国外的产品,如德国的Neurosign100,价格约为10万元,成本大大降低。另外,由于是自主研发,所以拥有知识产权。
1 神经/肌电信号简介
肌电检测系统的应用方向即为手术中对于病患脑部神经区域进行监测,所采用的方法如图1所示。
首先产生一个连续的类神经信号作用于此神经的一端,再于该神经另一端所相连的肌肉上提取肌电信号进行放大、滤波等各种处理,最后以LED及声音的形式显示出来,用于实时检测该神经是否在手术过程中被碰到。
因此,对于所需要设计的放大器系统,需要生成一个类神经电信号作为刺激信号,而所需放大处理的生物信号为肌电信号。
神经信号和人体的其它生物信号有相同的一些特点,也有其独具的一些特征。根据神经生物学的研究,神经信号是一种形似脉冲的电信号,频率一般为1kHz左右,高的可达10kHz;且应为脉冲宽度为0.2ms的脉冲电流,峰值为0.05mA~1mA,频率有3Hz及30Hz两种选择。
2 电路的设计
肌电检测系统包括刺激电路、放大与滤波电路和显示处理电路,而对于电极也进行了设计,包括探针等,预期结果如图2所示。
图2左边为电信号激励源部分,用来刺激神经,可产生频率3Hz和30Hz两种电流脉冲,脉冲的宽度为0.2ms,峰值在0.05~5mA之间可调;右边为信号部分,用来处理接收肌肉产生的电信号。信号处理及显示提示部分的具体参数指标如下:分为两个通道,可以独立显示、提示收到的肌电信号的强度。用LED 灯显示肌电信号的强度,范围在30 μV~20mV之间;用蜂鸣器提示肌电信号的强度,音量可调。而接收肌电信号的电极有三个脚(V+)、(Vref)、(V-),供接收及处理部分使用。
2.1 刺激电路
由于要求输出脉冲电流,有3Hz及30Hz两种选择,且脉冲宽度为0.2ms,而脉冲电流不易直接产生,所以首先由脉冲产生电路产生电压脉冲,频率为3Hz和30Hz两种,脉冲宽度为0.2ms。然后经过V/I转换电路转换成电流脉冲,转换电路中包含可调旋钮,控制输出脉冲的峰值在0.05~5mA之间。
2.2 前置处理盒电路
来自探针的肌电信号先送入前置放大电路进行电压信号放大,然后再经过高通滤波处理,滤除极化电压及低频噪声,低频截止频率为5Hz(极化电压是由探针的V+和V-两脚插入肌肉的深度不同而产生的)。高通滤波后的电压信号再经过低通滤波,滤除高频噪声,高频截止频率为1kHz。低通滤波后的电压信号再经过工频陷波,滤除50Hz工频的电信号。至此,前置处理盒的处理过程完毕,处理后的电压信号供后级信号处理及显示提示电路使用。
2.3 信号处理及显示提示电路
前置处理盒输出的电压信号首先经过二级放大电路放大到合适的幅值,然后驱动LED,显示肌电信号的强度。同时,电压信号经放大处理后,送入扬声器电路,用以声音提示。
除上述蔓部分主要电路外,要完成一个整体系统还需要有电源电路及各接口电路,其中由于各部分电路对于电源的要求不同,电源电路将分为激励电路的电源、隔离器之前部分的正负15V电源、隔离器之后部分的正负15V电源、A/D部分的电源、LED的电源和扬声器的电源五个部分。
3 电路的测试
通过PCB制图后,我们制作了实验板。在此次实验板的基础上,我们做了多种测试,以检验所设计系统的性能。
3.1 刺激电路的测试
(1)当频率选择端置高电平时,555定时器的3脚输出电压波形为峰值约为4.16V,频率约为3.1Hz的脉冲波;当频率选择端置低电平时,输出则为峰值约为4.16V,频率约为30 Hz的脉冲波。证明了系统的脉冲电压产生及频率选择的功能工作正常。
(2)选择频率选择端置低电平,且在刺激电路的输出两端外接一个1kΩ的负载电阻,同时检测两端的电压,得波形如图3所示。
放大器 生物神经 Neurosign100 肌电检测 相关文章:
- 使用简化电路的高压放大器(11-21)
- 无需调谐的“砖墙式”低通音频滤波器(11-20)
- 对数放大器的技术指标(11-26)
- 一种增大放大器增益的方法(11-28)
- 对数放大器的典型应用 (11-26)
- AGC中频放大器的设计 (11-29)