微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 一体化直驱电机驱动器的设计及实现

一体化直驱电机驱动器的设计及实现

时间:06-26 来源:电子工程专辑 作者: 周开勇 点击:

F2: IPM采用高电平驱动接口,内置了下拉电阻

F3: 微控制器的PD0端口上设有4.7kΩ的上拉电阻



软件设计

智能PI速度控制 一体化直驱电机通过霍尔传感器获得定子驱动的换相信号,对换相信号的时间间隔进行测量和数字滤波,可以得到电机的平均速度。与直流有刷电动机一样,调节电动机定子的平均电压就可以调节电动机的速度。

直接驱动电机的速度调节范围被设计为每分钟10~200转,在传动设备的应用中,对动态特性的要求并不高,速度的控制采用了PI控制算法。为了更好地对电机的速度进行控制,系统将会根据电机的运行状态,运用不同控制算法。

1)积分调节PI控制 当电机处于启动加速、减速停止或正/反转切换阶段时,系统的速度控制偏差e(t)将会很大,容易造成PI运算的积分积累过快,从而引起速度的超调和振荡。因此有必要根据速度的控制偏差和不同的负载状态改变PI调节器的积分参数;

2)积分遇限削弱PI控制 任何时候控制器还会根据上一次的PI调节器的输出来决定当前的PI调节器的积分动作。当上一次的PI调节器输出已经正向饱和时,则只有负的速度控制偏差会被积分;反之,只有正的速度控制偏差会被积分。

这两种控制算法的应用都是根据电机的运行状态进行的,一个由运行状态和速度控制偏差共同决定的PI控制算法的积分参数运算模块被应用在PI调节器中,速度的PI调节器将更智能化,调节器结构如图4所示。

F4: PI调节器结构


载频摆动 为降低驱动器的开关损耗和提高EMC性能,降低IPM的开关载频是有效的。然而低于8KHZ的载频将会由电机产生单调刺耳的音频噪声,往往会造成听觉疲劳和损伤。

随机脉冲宽度调制(RPWM)是一种有效的解决方法,它改变了电力传送中能量频谱的分布方式,将以固定载频传送时确定的离散的谐波能量分布改变为能量的近似连续的频谱分布。

系统使用ATmega88中的定时器/计数器1的快速PWM模式,相当于边缘对齐的PWM,可以同时改变PWM频率和占空比。如果将载频在一定范围内随机进行变换,而PWM的占空比不变,就可以达到随机脉冲宽度调制的效果,将刺耳的噪声改变为近似的白噪声。

驱动器基准载频f1和输出载频fout的关系表达如下: fout = f1*(1+Δ)

其中Δ为载频摆动因子,Δ的随机取值范围越大,载频摆动带来的效果越好。设计中驱动器的基准载频f1为5KHZ,Δ为0~0.5,输出载频fout在5KHZ~7.5KHZ之间摆动。软件通过随机函数获得Δ,然后通过简单运算获得PWM频率和占空比参数。MCU具有双缓冲的输出比较寄存器,在下一次定时器溢出后将自动装入新的PWM频率和占空比参数,产生无干扰脉冲,相位正确的PWM输出。

结语

一体化直驱电机的驱动器以高可靠性、小型化和人性化为设计目标,借助微控制器和可编程逻辑器件的高度智能化和可重塑性,以及IPM的高可靠性,使一体化直驱电机的竞争优势得到充分展现;用户接口的进一步扩展和转子定位精度的进一步提高,将有可能使一体化直驱电机进行互联而网络化,实现电子齿轮和电子凸轮的应用。

参考文献

1. 直流无刷电动机原理及应用.张琛.机械工业出版社

2. ATmega88/V Data_sheet. Atmel Corporation

3. ispMACH 4A Data_sheet. Lattice Semiconductor Corporation

4. SSM1003MA规格书. SANKEN ELECTRIC CO.,LTD








  

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top