车载导航定位技术与测试方法
系统—坐标系》等。(原标准为俄文,名称为翻译)欧盟标准为:CEN/TS 16454:2012《Intelligent Transport Systems-ESafety-ECall end to end Conformance Testing》。
3.2、国内标准
国内卫星导航标准制定最初以各应用领域自制为主,民用标准主要分布在交通运输、信息通信、民航及空管、测绘勘探、防震减灾等各个行业,军用标准主要是机载和舰载设备的应用标准。
(1)在车载导航定位标准方面
已经发布的标准和规范主要有:GB/T 19392-2013《汽车GPS导航通用规范》、GB/T 19056-2012《汽车行驶记录仪》、JT/T 794-2011《道路运输车辆卫星定位系统车载终端技术要求》、交通运输部《道路运输车辆卫星定位系统北斗兼容车载终端技术规范》、JT/T590-2004《北斗卫星无线电测定业务(RDSS)民用车(船)载遇险报警终端设备技术要求和使用要求》、JT/T 808-2011《道路运输车辆卫星定位系统 终端通讯协议及数据格式》等。
(2)在信息通信行业
主要由中国通信标准化协会统一管理标准的制修订工作,其中与车载终端导航定位相关的在研标准和研究课题主要包括:《基于公众电信网的车载紧急报警系统 总体架构》、《基于公众电信网的车载紧急报警系统 终端技术要求和测试方法》、《车载移动通信终端导航定位射频接收机性能技术要求和测试方法》、《车载移动通信终端导航定位空间射频接收机性能技术要求和测试方法》等。
(3)在交通运输行业
交通运输部信息通信及导航标准化技术委员会正在制定《道路运输车辆卫星定位系统 北斗兼容卫星定位模块技术要求》、《道路运输车辆卫星定位系统北斗兼容卫星定位模块通讯协议》等标准。
2010年2月4日,为促进我国车载信息服务和车联网领域的技术创新和服务应用,由中国电子工业标准化技术协会发起成立了车载信息服务产业应用联盟(Telematics Industry Application Alliance,TIAA),全国数十家产学研用骨干单位参与了该联盟。目前,在TIAA 第六工作组,正在制定联盟标准《紧急救援系统 车载子系统技术要求》。
车载终端的导航定位标准涉及信息通信行业、交通运输行业等不同行业,在标准的制定过程中,如何进行统一协调是很大的问题。公众紧急报警传送及定位技术推进组、TIAA联盟等组织的成立都是为了组织协调不同的部门和单位,共同推动相关标准化的进展。这也是未来标准制定方式的一个发展趋势。
4、导航定位性能测试项目
不光车载终端,用户在使用任何带导航定位的终端时都会对其性能有一定的要求,如开机后多久能够获得定位结果?定位精度有多高?定位之后如果中断(如进入底下通道或隧道),出去多久之后可以再次重新定位?根据用户的这些性能要求,有不同的性能指标去衡量。主要测试指标包括首次定位时间、定位测速精度、失锁重捕时间、跟踪灵敏度、捕获灵敏度。
(1)首次定位时间(TTFF)
用于衡量接收机信号搜索过程的快慢程度,接收机的首次定位时间取决于初始状态,根据用户开机前的初始化条件,可分为冷启动首次定位时间、温启动首次定位时间和热启动首次定位时间,对于车载终端,一般测试冷、热启动的首次定位时间。3种初始化条件分别为:
● 冷启动:接收终端开机时,没有当前有效的历书、星历和本机概略位置信息。
● 温启动:接收终端开机时,没有当前有效的星历信息,但是有当前有效的历书和本机概略位置信息。
● 热启动:接收终端开机时,有当前有效的历书、星历和本机概略位置等信息。
(2)定位精度
是指接收终端在特定星座和星历条件下,接收卫星导航信号进行定位解算得到的位置与真实位置的接近程度,一般以水平定位精度和高程定位精度方式表示。测速精度是指接收卫星导航信号进行速度解算得到的速度与真实速度的接近程度。
所有的精度都是根据实际的测试数据使用某种统计学的方法出来的,根据选择的统计方法不同,计算的结果也会有很大的差异。常用的统计方法有均方根值(RMS)法和R95法。卫星导航接收机的水平定位精度均方根值为1.2m是指"使用测试数据统计得到,测量位置与真实位置之间水平误差的标准差为1.2m,也就意味着有约65%测量值与真实的误差在1.2m以内"。R95法意味这有约95%测量值与真实的误差在1.2m以内,R95法得到的精度值约为RMS法得到的精度值的1.7倍。因此,在了解精度量化数值的同时,必须要了解它是用何种统计方法描述的。
(3)失锁重捕时间
是指接收终端在丢失所接收信号状态下,从重新接收到信号开始,至终端设备输出符合定位精度要求的定位结果所需的时间。失锁重捕时间反映了在接收机信号失
- 北斗卫星导航试验系统(北斗一代)(02-04)
- 基于铁路巡线的导航定位终端的设计 (11-30)
- 基于ARM的GPS接收机系统设计(03-06)
- 便携式仪器在射频测试中扮演的角色(09-02)
- 模块化仪器应对射频测试的复杂需求(08-08)
- 如何保物联网传输质量 射频测试受关注(05-12)