触摸屏设计日益简化
时间:03-03
来源:EDN
点击:
一种比塑料更好的衬底材料,因为它的光学特性比塑料好,透明度更高,光散射更校不过,如何把玻璃层粘接在刚性面板上是一大挑战,因为很难消除层压工艺中的空气。
现在有一些更先进的设计是直接在纯平触摸屏上涂敷感测层,完全无需载体层 (图3)。利用这种方法可以把整个面板做得更薄,当然也进一步改进了光学特性。每减少一层,就降低了一部分成本和测试时间,从而提高解决方案的经济效益,更有利于大批量生产。所以单层电极结构非常适合于这类构建。
材料叠层的厚度当然取决于层数。一个典型的三层结构 (X、Y、屏蔽层) 可能厚达450mm,而在玻璃上的单层结构 (图3) 厚度可能仅25mm。当然,叠层厚度对小型便携式设备而言至关重要,每加一层便会增大模糊度,降低透光度。此外,高层数解决方案还有一个缺点,即是功耗增加,因为LCD背光不得提高亮度以补偿光吸收的增加。
在所有情况下,ITO电极都需要经由出线端 (tail) 连接,插入到包含感测芯片的PCB 中。但有些情况下,芯片可以直接安装在出线端上。连接线迹通常由丝网印刷银墨形成,而有些情况则是由溅射和蚀刻金属构成,以减小厚度。由于触摸屏周边的空间限制,故这些线迹可能非常难于设计。
触摸屏使用的感测电路和方法完全取决于技术供应商,英国量研科技公司在1990年末开发的专利技术"电荷转移感测"就是可靠技术的一个典型实例。电荷转移感测技术可以实现超低阻抗的感测,有助于减小外部噪声的影响,它有两种类型:1) 单端模式;2) 横穿模式 。其中横穿模式的性能最高,因为它能够轻易识别同一个触摸屏元素上多个触点的绝对位置,而单端模式却具有难以避免的含糊性。
这种感测电路还整合了一个微控制器,其接收原始信号数据并进行处理,输出一个X-Y位置信号 (在多触点触摸屏的情况下,可为多个输出)。这种用来减少数据的算法是基于数学内插方法的。一般而言,一个投射式电容解决方案能够达到10位×10位 (1024×1024) 的分辨率,足以满足大多数应用的需求。
如果需要手势和笔迹识别,还可包含其它的一些算法。
结论
触摸屏已成为电子控制表面的一种主流设计趋势。在全球触摸屏市场,虽然投射式电容感测技术仍只占极小部分,但它正以加速方式逐渐获得采纳。这种最为人所期待的技术将只包含一个透明感测层,并采用非常可靠的感测电路和算法来提高可靠性并降低成本。投射式电容感测技术很可能取代电阻性技术成为下一代主流技术。
现在有一些更先进的设计是直接在纯平触摸屏上涂敷感测层,完全无需载体层 (图3)。利用这种方法可以把整个面板做得更薄,当然也进一步改进了光学特性。每减少一层,就降低了一部分成本和测试时间,从而提高解决方案的经济效益,更有利于大批量生产。所以单层电极结构非常适合于这类构建。
材料叠层的厚度当然取决于层数。一个典型的三层结构 (X、Y、屏蔽层) 可能厚达450mm,而在玻璃上的单层结构 (图3) 厚度可能仅25mm。当然,叠层厚度对小型便携式设备而言至关重要,每加一层便会增大模糊度,降低透光度。此外,高层数解决方案还有一个缺点,即是功耗增加,因为LCD背光不得提高亮度以补偿光吸收的增加。
在所有情况下,ITO电极都需要经由出线端 (tail) 连接,插入到包含感测芯片的PCB 中。但有些情况下,芯片可以直接安装在出线端上。连接线迹通常由丝网印刷银墨形成,而有些情况则是由溅射和蚀刻金属构成,以减小厚度。由于触摸屏周边的空间限制,故这些线迹可能非常难于设计。
触摸屏使用的感测电路和方法完全取决于技术供应商,英国量研科技公司在1990年末开发的专利技术"电荷转移感测"就是可靠技术的一个典型实例。电荷转移感测技术可以实现超低阻抗的感测,有助于减小外部噪声的影响,它有两种类型:1) 单端模式;2) 横穿模式 。其中横穿模式的性能最高,因为它能够轻易识别同一个触摸屏元素上多个触点的绝对位置,而单端模式却具有难以避免的含糊性。
这种感测电路还整合了一个微控制器,其接收原始信号数据并进行处理,输出一个X-Y位置信号 (在多触点触摸屏的情况下,可为多个输出)。这种用来减少数据的算法是基于数学内插方法的。一般而言,一个投射式电容解决方案能够达到10位×10位 (1024×1024) 的分辨率,足以满足大多数应用的需求。
如果需要手势和笔迹识别,还可包含其它的一些算法。
结论
触摸屏已成为电子控制表面的一种主流设计趋势。在全球触摸屏市场,虽然投射式电容感测技术仍只占极小部分,但它正以加速方式逐渐获得采纳。这种最为人所期待的技术将只包含一个透明感测层,并采用非常可靠的感测电路和算法来提高可靠性并降低成本。投射式电容感测技术很可能取代电阻性技术成为下一代主流技术。
- 什么是权电阻网络DAC(数模转换器)(01-24)
- 倒T型电阻网络D/A转换器(01-24)
- 运放电路设计中无源元件的选择(01-23)
- 电子连接器接触电阻测试程序(07-08)
- 输出电容器的等效串联电阻对滞环控制功率转换器的影响(07-12)
- 电阻器基本常识(07-06)