微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 简化Li+电池充电器CC-CV充电测试

简化Li+电池充电器CC-CV充电测试

时间:01-16 来源:EDN 点击:

建立电池模型负载

  图2电路模拟的是单节锂离子电池。充电器CC阶段的终止充电电压和快速充电电流由充电器设置决定。仿真器初始化时,可设置完全放电条件下内部电池电压为3V,但该电压可以提升到4.3V,以测试过充电情况。3V初始值通常用于低电池电压关断电路(用来终止锂离子电池放电过程)。这种设计专门针对终止充电压为4.2V的标准CC-CV锂离子电池充电器。该设计调整起来很容易,能够适应非标准终止电压和完全放电电压的测试。测试时充电器用高达3A的充电电流驱动仿真电路,受功率晶体管功耗的限制。图2电路模拟了电池电压增加的情况,电池电压是从仿真电路设置为完全放电状态开始,电路充电电流的函数。

图2 单节Li+电池充电情况的仿真电路,该电路可以在不使用实际电池的情况下测试Li+电池充电器


  根据图中给出的参数值,充电电流为1A时,积分时间常数使模拟电路在6至7秒内达到充电器的4.2V限制。对电流范围、内阻、充电终止电压和完全放电电压的模拟是在锂离子电池(本例中指Sony US18650G3)典型参数的基础上完成的。所仿真的电池电压没有考虑环境温度的影响。

  并联稳压器设计采用MAX8515并联稳压器和一对双极型功率晶体管(选择该稳压器时考虑了其内部基准电压的精度),大电流TIP35晶体管安装在能够耗散25W热量的散热器上。

  MAX4163双运放的其中一个放大器用来对充电电流积分,另一个放大器对电流测量信号进行放大和偏置。该运算放大器具有较高的电源抑制比,并可支持满摆幅输入/输出范围,简化了两种功能电路的设计。注意,与电池仿真器正端串联的0.100Ω电流检测电阻同时也作为电池内阻。

  在具有自动测试-数据采集功能的系统内工作时,可用外部信号将仿真电池复位到完全放电状态。另外,手动操作测试设置时,可用按键复位。

  利用单刀单掷开关可以选择仿真电池的两种工作模式。掷向A端时,实现积分充电仿真器,如上所述。掷向B端时,仿真器将设定在某一固定的直流工作点对充电器进行现场测试时的输出电压和吸电流。为实现这一功能,"设置"电压可通过改变50kΩ可变电阻,在2.75V至5.75V之间手动调整。这些设置电压值与内部吸入电流有关。仿真器端实测电压(VBATT)等于设定电压加上吸电流流经仿真电池内阻(0.100Ω电阻)产生的压降。仿真电路工作时的电源取自电池充电器输出。

  仿真电路的性能

  图3为模拟锂离子电池充电至4.2V时获得的典型V-I波形。从图中可以看出两个测试过程:一个是以1A初始快充电流充电(曲线B和D),另一个是以2A快充电流充电(曲线A和C)。这两种情况下,首先进入CC阶段充电,直到电池电压达到终止电压4.2V。在此之后,电流呈指数衰减,而仿真电池的电压保持不变。充电电流为2A时到达终止电压所需的时间更短,与预期设计相同。然而,请注意,电流加倍不会使充电时间减半,只会使到达CV模式的时间减半,与真实电池负载的测试情况一样。

图3 根据图2电池仿真电路绘制出的图形,快速充电波形表明两种条件下电池充电器的工作情况,分别是:CC阶段提供1A (曲线B和D)和2A (曲线A和C)充电电流


  图4为两个不同设置电压:3V和4.1V时的吸电流V-I曲线。两个曲线的动态电阻(用斜率表示)仅仅是由0.100Ω电阻模拟的电池内阻。

图4 图2电路在电压为4.1V (上部曲线)和3V (下部曲线)时的吸入电流,两种情况下斜率均代表0.1Ω内阻


  结语

  由于锂离子电池充电过程需要一小时或更长时间,利用实际负载测试锂电池充电器将非常耗时,而且往往不切实际。为了加快电池充电器测试,本文介绍了一个简单电路,用来模拟锂离子电池。该电路提供了一个不使用实际电池对锂电池充电器进行测试的有效手段。


Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top